scispace - formally typeset
Search or ask a question
Author

Pawel Wargocki

Other affiliations: Fraunhofer Society
Bio: Pawel Wargocki is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Ventilation (architecture) & Indoor air quality. The author has an hindex of 43, co-authored 234 publications receiving 8661 citations. Previous affiliations of Pawel Wargocki include Fraunhofer Society.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors, and that the use of engineering controls in public buildings would be an additional important measure globally to reduce the likelihood of transmission.

924 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the results of a literature survey aimed at exploring how the indoor environment in buildings affects human comfort, including thermal, visual and acoustic, as well as air quality.

839 citations

Journal ArticleDOI
TL;DR: This study shows the benefits for health, comfort and productivity of ventilation at rates well above the minimum levels prescribed in existing standards and guidelines and confirms the results of a previous study in the same office when the indoor air quality was improved by decreasing the pollution load while the ventilation remained unchanged.
Abstract: Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in a normally furnished office space (108 m3) ventilated with an outdoor airflow of 3, 10 or 30 L/s per person, corresponding to an air change rate of 0.6, 2 or 6 h-1. The temperature of 22 degrees C, the relative humidity of 40% and all other environmental parameters remained unchanged. Five groups of six female subjects were each exposed to the three ventilation rates, one group and one ventilation rate at a time. Each exposure lasted 4.6 h and took place in the afternoon. Subjects were unaware of the intervention and remained thermally neutral by adjusting their clothing. They assessed perceived air quality and SBS symptoms at intervals, and performed simulated normal office work. Increasing ventilation decreased the percentage of subjects dissatisfied with the air quality (P < 0.002) and the intensity of odour (P < 0.02), and increased the perceived freshness of air (P < 0.05). It also decreased the sensation of dryness of mouth and throat (P < 0.0006), eased difficulty in thinking clearly (P < 0.001) and made subjects feel generally better (P < 0.0001). The performance of four simulated office tasks improved monotonically with increasing ventilation rates, and the effect reached formal significance in the case of text-typing (P < 0.03). For each two-fold increase in ventilation rate, performance improved on average by 1.7%. This study shows the benefits for health, comfort and productivity of ventilation at rates well above the minimum levels prescribed in existing standards and guidelines. It confirms the results of a previous study in the same office when the indoor air quality was improved by decreasing the pollution load while the ventilation remained unchanged.

624 citations

Journal ArticleDOI
TL;DR: Reducing the pollution load on indoor air proved to be an effective means of improving the comfort, health and productivity of building occupants.
Abstract: Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in an existing office in which the air pollution level could be modified by introducing or removing a pollution source. This reversible intervention allowed the space to be classified as either non-low-polluting or low-polluting, as specified in the new European design criteria for the indoor environment CEN CR 1752 (1998). The pollution source was a 20-year-old used carpet which was introduced on a rack behind a screen so that it was invisible to the occupants. Five groups of six female subjects each were exposed to the conditions in the office twice, once with the pollution source present and once with the pollution source absent, each exposure being 265 min in the afternoon, one group at a time. They assessed the perceived air quality and SBS symptoms while performing simulated office work. The subject-rated acceptability of the perceived air quality in the office corresponded to 22% dissatisfied when the pollution source was present, and to 15% dissatisfied when the pollution source was absent. In the former condition there was a significantly increased prevalence of headaches (P = 0.04) and significantly lower levels of reported effort (p = 0.02) during the text typing and calculation tasks, both of which required a sustained level of concentration. In the text typing task, subjects worked significantly more slowly when the pollution source was present in the office (P = 0.003), typing 6.5% less text than when the pollution source was absent from the office Reducing the pollution load on indoor air proved to be an effective means of improving the comfort, health and productivity of building occupants.

483 citations

Journal ArticleDOI
TL;DR: Satisfaction with amount of space was ranked to be most important for workspace satisfaction, regardless of age group (below 30, 31-50 or over 50 years old), gender, type of office (single or shared offices, or cubicles), distance of workspace from a window, or satisfaction level with workspace (satisfied or dissatisfied).
Abstract: Author(s): Frontczak, Monika; Schiavon, Stefano; Goins, John; Arens, Edward A; Zhang, Hui, Ph.D; Wargocki, Pawel | Abstract: The paper examines which subjectively evaluated indoor environmental parameters and building features mostly affect occupants’ satisfaction in mainly US office buildings. The study analyzed data from a web-based survey administered to 52,980 occupants in 351 office buildings over ten years by the Center for the Built Environment. The survey uses 7-point ordered scale questions pertaining to satisfaction with indoor environmental parameters, workspace and building features. The average building occupant was satisfied with his/her workspace and building. Proportional odds ordinal logistic regression shows that satisfaction with all 15 parameters listed in the survey contributed significantly to overall workspace satisfaction. The most important parameters were satisfaction with amount of space (odds ratio OR 1.57, CI: 1.55-1.59), noise level (OR 1.27, CI: 1.25-1.29) and visual privacy (OR 1.26, CI: 1.24-1.28). Satisfaction with amount of space was ranked to be the most important influence for workspace satisfaction, regardless of age group (below 30, 31-50 or over 50 years old), gender, type of office (single or shared offices, or cubicles), distance of workspace from a window (within 4.6 m or further) or satisfaction level with workspace (satisfied or dissatisfied). Satisfaction with amount of space was not related to the gross amount of space available per person.PRACTICAL IMPLICATIONSTo maximize workspace satisfaction designer should invest in aspects which increase satisfaction with amount of space and storage, noise level and visual privacy. Office workers will be most satisfied with their workspace and building when located close to a window in a private office. This may affect job satisfaction, work performance and personal and company productivity.

407 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The author guides the reader in about 350 pages from descriptive and basic statistical methods over classification and clustering to (generalised) linear and mixed models to enable researchers and students alike to reproduce the analyses and learn by doing.
Abstract: The complete title of this book runs ‘Analyzing Linguistic Data: A Practical Introduction to Statistics using R’ and as such it very well reflects the purpose and spirit of the book. The author guides the reader in about 350 pages from descriptive and basic statistical methods over classification and clustering to (generalised) linear and mixed models. Each of the methods is introduced in the context of concrete linguistic problems and demonstrated on exciting datasets from current research in the language sciences. In line with its practical orientation, the book focuses primarily on using the methods and interpreting the results. This implies that the mathematical treatment of the techniques is held at a minimum if not absent from the book. In return, the reader is provided with very detailed explanations on how to conduct the analyses using R [1]. The first chapter sets the tone being a 20-page introduction to R. For this and all subsequent chapters, the R code is intertwined with the chapter text and the datasets and functions used are conveniently packaged in the languageR package that is available on the Comprehensive R Archive Network (CRAN). With this approach, the author has done an excellent job in enabling researchers and students alike to reproduce the analyses and learn by doing. Another quality as a textbook is the fact that every chapter ends with Workbook sections where the user is invited to exercise his or her analysis skills on supplemental datasets. Full solutions including code, results and comments are given in Appendix A (30 pages). Instructors are therefore very well served by this text, although they might want to balance the book with some more mathematical treatment depending on the target audience. After the introductory chapter on R, the book opens on graphical data exploration. Chapter 3 treats probability distributions and common sampling distributions. Under basic statistical methods (Chapter 4), distribution tests and tests on means and variances are covered. Chapter 5 deals with clustering and classification. Strangely enough, the clustering section has material on PCA, factor analysis, correspondence analysis and includes only one subsection on clustering, devoted notably to hierarchical partitioning methods. The classification part deals with decision trees, discriminant analysis and support vector machines. The regression chapter (Chapter 6) treats linear models, generalised linear models, piecewise linear models and a substantial section on models for lexical richness. The final chapter on mixed models is particularly interesting as it is one of the few text book accounts that introduce the reader to using the (innovative) lme4 package of Douglas Bates which implements linear mixed-effects models. Moreover, the case studies included in this

1,679 citations

Journal ArticleDOI
TL;DR: Adverse health effects from exposure to formaldehyde in prefabricated houses, especially irritation of the eyes and upper airways, were first reported in the mid-1960s and a guideline value of 0.1 ppm was proposed in 1977 by the former German Federal Agency of Health to limit human exposure in dwellings.
Abstract: 1.1. History Formaldehyde was described in the year 1855 by the Russian scientist Alexander Michailowitsch Butlerow. The technical synthesis by dehydration of methanol was achieved in 1867 by the German chemist August Wilhelm von Hofmann. The versatility that makes it suitable for use in various industrial applications was soon discovered, and the compound was one of the first to be indexed by Chemical Abstracts Service (CAS). In 1944, Walker published the first edition of his classic work Formaldehyde.(1) Between 1900 and 1930, formaldehyde-based resins became important adhesives for wood and wood composites. The first commercial particle board was produced during World War II in Bremen, Germany. Since 1950, particle board has become an attractive alternative to solid wood for the manufacturing of furniture. Particle board and other wood-based panels were subsequently also used for the construction of housing. Adverse health effects from exposure to formaldehyde in prefabricated houses, especially irritation of the eyes and upper airways, were first reported in the mid-1960s. Formaldehyde emissions from particle boards bonded with urea formaldehyde resin were soon identified as the cause of the complaints. As a consequence, a guideline value of 0.1 ppm was proposed in 1977 by the former German Federal Agency of Health to limit human exposure in dwellings. Criteria for the limitation and regulation of formaldehyde emissions from wood-based materials were established in 1981 in Germany and Denmark. The first regulations followed in the United States in 1985 or thereabouts. In Germany and the United States, large-scale test chambers were used for the evaluation of emissions. Although the chamber method is very reliable, it is also time-consuming and expensive. This meant there was a strong demand for simple laboratory test methods.(2)

1,253 citations

Journal ArticleDOI
TL;DR: A rapidly growing body of research applies panel methods to examine how temperature, precipitation, and windstorms influence economic outcomes as mentioned in this paper, including agricultural output, industrial output, labor productivity, energy demand, health, conflict, and economic growth.
Abstract: A rapidly growing body of research applies panel methods to examine how temperature, precipitation, and windstorms influence economic outcomes. These studies focus on changes in weather realizations over time within a given spatial area and demonstrate impacts on agricultural output, industrial output, labor productivity, energy demand, health, conflict, and economic growth, among other outcomes. By harnessing exogenous variation over time within a given spatial unit, these studies help credibly identify (i) the breadth of channels linking weather and the economy, (ii) heterogeneous treatment effects across different types of locations, and (iii) nonlinear effects of weather variables. This paper reviews the new literature with two purposes. First, we summarize recent work, providing a guide to its methodologies, datasets, and findings. Second, we consider applications of the new literature, including insights for the "damage function" within models that seek to assess the potential economic effects of future climate change. ( JEL C51, D72, O13, Q51, Q54)

1,057 citations