scispace - formally typeset
Search or ask a question
Author

Payal Kapur

Bio: Payal Kapur is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Clear cell renal cell carcinoma & Renal cell carcinoma. The author has an hindex of 42, co-authored 223 publications receiving 8743 citations. Previous affiliations of Payal Kapur include University of Texas at Dallas & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
John N. Weinstein1, Rehan Akbani1, Bradley M. Broom1, Wenyi Wang1  +293 moreInstitutions (30)
01 Jan 2014-Nature
TL;DR: Ch Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalities.
Abstract: Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. To date, no molecularly targeted agents have been approved for the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#termsThis paper is distributed under the terms of the Creative Commons. Attribution-Non-Commercial-Share Alike license, and the online version of the paper is freely available to all readers.

2,257 citations

Journal ArticleDOI
TL;DR: The results establish the foundation for an integrated pathological and molecular genetic classification of RCC, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.
Abstract: The molecular pathogenesis of renal cell carcinoma (RCC) is poorly understood. Whole-genome and exome sequencing followed by innovative tumorgraft analyses (to accurately determine mutant allele ratios) identified several putative two-hit tumor suppressor genes, including BAP1. The BAP1 protein, a nuclear deubiquitinase, is inactivated in 15% of clear cell RCCs. BAP1 cofractionates with and binds to HCF-1 in tumorgrafts. Mutations disrupting the HCF-1 binding motif impair BAP1-mediated suppression of cell proliferation but not deubiquitination of monoubiquitinated histone 2A lysine 119 (H2AK119ub1). BAP1 loss sensitizes RCC cells in vitro to genotoxic stress. Notably, mutations in BAP1 and PBRM1 anticorrelate in tumors (P = 3 × 10(-5)), [corrected] and combined loss of BAP1 and PBRM1 in a few RCCs was associated with rhabdoid features (q = 0.0007). BAP1 and PBRM1 regulate seemingly different gene expression programs, and BAP1 loss was associated with high tumor grade (q = 0.0005). Our results establish the foundation for an integrated pathological and molecular genetic classification of RCC, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.

790 citations

Journal ArticleDOI
03 Nov 2016-Nature
TL;DR: It is shown that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials, using a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective Hif-2 antagonist that was identified using a structure-based design approach.
Abstract: The transcription factor HIF-2, an important driver of clear cell renal cell carcinoma, has been called 'undruggable'. However, in this issue of Nature, two groups report on the development and testing of a novel HIF-2 inhibitor, termed PT2399. William Kaelin and colleagues show that PT2399 causes tumour regression in preclinical mouse models of primary and metastatic pVHL-defective clear cell renal cell carcinoma. James Brugarolas and colleagues tested the compound in mice with tumour grafts generated from human renal cell cancers. PT2399 decreased tumour growth in 10 out of 18 cell lines and was well tolerated. The authors identify potential markers of sensitivity and provide initial characterization of the effects and mechanisms of resistance acquisition in vivo. Both groups report variable sensitivity to PT2399 in some pVHL-defective cell lines, highlighting a need for predictive biomarkers to be developed for use of this approach in the clinic.

495 citations

Journal ArticleDOI
TL;DR: The findings establish the basis for a molecular genetic classification of clear-cell renal-cell carcinoma with distinct clinical outcomes, a high-risk BAP1-mutant group and a favourable PBRM1-Mutant group.
Abstract: Summary Background Clear-cell renal-cell carcinomas display divergent clinical behaviours. However, the molecular genetic events driving these behaviours are unknown. We discovered that BAP1 is mutated in about 15% of clear-cell renal-cell carcinoma, and that BAP1 and PBRM1 mutations are largely mutually exclusive. The aim of this study was to investigate the clinicopathological significance of these molecular subtypes and to determine whether patients with BAP1 -mutant and PBRM1 -mutant tumours had different overall survival. Methods In this retrospective analysis, we assessed 145 patients with primary clear-cell renal-cell carcinoma and defined PBRM1 and BAP1 mutation status from the University of Texas Southwestern Medical Center (UTSW), TX, USA, between 1998 and 2011. We classified patients into those with BAP1 -mutant tumours and those with tumours exclusively mutated for PBRM1 ( PBRM1 -mutant). We used a second independent cohort (n=327) from The Cancer Genome Atlas (TCGA) for validation. In both cohorts, more than 80% of patients had localised or locoregional disease at presentation. Overall both cohorts were similar, although the TCGA had more patients with metastatic and higher-grade disease, and more TCGA patients presented before molecularly targeted therapies became available. Findings The median overall survival in the UTSW cohort was significantly shorter for patients with BAP1 -mutant tumours (4·6 years; 95% CI 2·1–7·2), than for patients with PBRM1 -mutant tumours (10·6 years; 9·8–11·5), corresponding to a HR of 2·7 (95% CI 0·99–7·6, p=0·044). Median overall survival in the TCGA cohort was 1·9 years (95% CI 0·6–3·3) for patients with BAP1 -mutant tumours and 5·4 years (4·0–6·8) for those with PBRM1 -mutant tumours. A HR similar to the UTSW cohort was noted in the TCGA cohort (2·8; 95% CI 1·4–5·9; p=0·004). Patients with mutations in both BAP1 and PBRM1 , although a minority (three in UTSW cohort and four in TCGA cohort), had the worst overall survival (median 2·1 years, 95% CI 0·3–3·8, for the UTSW cohort, and 0·2 years, 0·0–1·2, for the TCGA cohort). Interpretation Our findings identify mutation-defined subtypes of clear-cell renal-cell carcinoma with distinct clinical outcomes, a high-risk BAP1 -mutant group and a favourable PBRM1 -mutant group. These data establish the basis for a molecular genetic classification of clear-cell renal-cell carcinoma that could influence treatment decisions in the future. The existence of different molecular subtypes with disparate outcomes should be considered in the design and assessment of clinical studies. Funding Cancer Prevention and Research Institution of Texas and National Cancer Institute.

372 citations

Journal ArticleDOI
TL;DR: Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC and observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC 7 inhibitors.
Abstract: To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non-clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations. In chRCC, we found TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be significantly mutated. Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC. Using RNA sequencing, we identified previously unreported gene fusions, including ACTG1-MITF fusion. Ectopic expression of the ACTG1-MITF fusion led to cellular transformation and induced the expression of downstream target genes. Finally, we observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC7 inhibitors.

301 citations


Cited by
More filters
Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati5, Sam Behjati1, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg3, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk14, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog17, Stian Knappskog11, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson20, Andrea L. Richardson22, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi15, Jessica Zucman-Rossi14, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson20, Matthew Meyerson14, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister16, Stefan M. Pfister11, Peter J. Campbell29, Peter J. Campbell2, Peter J. Campbell30, Michael R. Stratton31, Michael R. Stratton2 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
17 Oct 2013-Nature
TL;DR: Data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types are presented as part of the TCGA Pan-Cancer effort, and clinical association analysis identifies genes having a significant effect on survival.
Abstract: The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.

3,658 citations

Journal ArticleDOI
TL;DR: UALCAN, an easy to use, interactive web-portal to perform to in-depth analyses of TCGA gene expression data, serves as a platform for in silico validation of target genes and for identifying tumor sub-group specific candidate biomarkers.

3,546 citations

Journal ArticleDOI
TL;DR: Treatment with atezolizumab resulted in a significantly improved RECIST v1.1 response rate, compared with a historical control overall response rate of 10%, and Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolediazepine.

2,934 citations