scispace - formally typeset
Search or ask a question
Author

Pedro Castaño

Bio: Pedro Castaño is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Catalysis & Coke. The author has an hindex of 36, co-authored 114 publications receiving 4095 citations. Previous affiliations of Pedro Castaño include Delft University of Technology & University of the Basque Country.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a review of the significant work that has been published in the field of electrocatalytic reduction of CO2 to methanol, emphasizing the aspects related to process design at different levels: cathode materials, reaction media, design of electrochemical cells, and working conditions.

395 citations

Journal ArticleDOI
TL;DR: In this article, a review deals with the currently existing alternatives at the catalyst and reactor level to cope with catalyst deactivation and increase process stability, and then delves with the fundamental phenomena occurring during this catalysts deactivation.
Abstract: Undoubtedly, hydrogen (H2) is a clean feedstock and energy carrier whose sustainable production should be anticipated. The pyrolysis of biomass or waste plastics and the subsequent reforming over base (transition) or noble metals supported catalysts allows reaching elevated H2 yields. However, the catalyst used in the reforming step undergoes a rapid and severe deactivation by means of a series of physicochemical phenomena, including metal sintering, metallic phase oxidation, thermal degradation of the support and, more notoriously, coke deposition. This review deals with the currently existing alternatives at the catalyst and reactor level to cope with catalyst deactivation and increase process stability, and then delves with the fundamental phenomena occurring during this catalyst deactivation. An emphasis is placed on coke deposition and its influence on deactivation, which depends on its location, chemical nature, morphology, precursors or formation mechanism, among others. We also discuss the challenges for increasing the value of the carbon materials formed and therefore, enhance process viability.

248 citations

Journal ArticleDOI
TL;DR: These electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase.
Abstract: The electrocatalytic reduction of CO2 has been investigated using four Cu-based metal–organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal–organic framework (MOF), [Cu3(μ6-C9H3O6)2]n; (2) CuAdeAce MOF, [Cu3(μ3-C5H4N5)2]n; (3) CuDTA mesoporous metal–organic aerogel (MOA), [Cu(μ-C2H2N2S2)]n; and (4) CuZnDTA MOA, [Cu0.6Zn0.4(μ-C2H2N2S2)]n. The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm−2, an electrolyte-flow/area ratio of 3 mL min cm−2, and a gas-flow/area ratio of 20 mL min cm−2. We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively.

245 citations

Journal ArticleDOI
TL;DR: In this article, the mechanism of coke deactivation of a Ni/La 2 O 3 -αAl 2O 3 catalyst in ethanol steam reforming conducted in a fluidized bed reactor under conditions of severe deactivation, at 500°C.

203 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the zeolite structure (HZSM-5, Hβ and HY) on coke deposition during the cracking of high-density polyethylene has been studied by combining the results of multiple spectroscopic and analytical techniques: FTIR, Raman, UV-vis, 13 C NMR and coke extraction.
Abstract: The effect of the zeolite structure (HZSM-5, Hβ and HY) on coke deposition during the cracking of high-density polyethylene has been studied by combining the results of multiple spectroscopic and analytical techniques: FTIR, Raman, UV–vis, 13 C NMR and coke extraction, followed by GC-MS and 1 H NMR analysis. In addition, by combining FTIR and temperature programmed oxidation (TPO) analysis we obtained information on the coke: properties, burn-off, and changes in composition during catalyst regeneration. Samples of the spent catalysts were obtained in a state-of-the-art pilot plant (conical spouted bed reactor) after the continuous treatment of 900 g (1 g min −1 , 15 h) of high-density polyethylene at 500 °C, using 30 g of catalyst. The results show that as the pore diameter of the zeolite is increased, bimolecular reactions (hydrogen transfer and oligomerizations), condensations and cyclizations are enhanced, yielding more aromatic coke. Furthermore, the pore topology of the HZSM-5 zeolite improves the flow of coke precursors (also favored by the high flow rate of N 2 ) to the outside of the catalyst; viz. HZSM-5 catalyst preserves its activity for longer.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenization reaction.
Abstract: As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article. Bio-oil production can be facilitated through flash pyrolysis, which has been identified as one of the most feasible routes. The bio-oil has a high oxygen content and therefore low stability over time and a low heating value. Upgrading is desirable to remove the oxygen and in this way make it resemble crude oil. Two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking. HDO is a high pressure operation where hydrogen is used to exclude oxygen from the bio-oil, giving a high grade oil product equivalent to crude oil. Catalysts for the reaction are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200 h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenation reaction. In these systems hydrogen is not a requirement, so operation is performed at atmospheric pressure. However, extensive carbon deposition results in very short catalyst lifetimes. Furthermore a general restriction in the hydrogen content of the bio-oil results in a low H/C ratio of the oil product as no additional hydrogen is supplied. Overall, oil from zeolite cracking is of a low grade, with heating values approximately 25% lower than that of crude oil. Of the two mentioned routes, HDO appears to have the best potential, as zeolite cracking cannot produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms, understanding of the kinetics, elucidation of sulphur as a source of deactivation, evaluation of the requirement for high pressure, and sustainable sources for hydrogen are all areas which have to be elucidated before commercialisation of the process.

1,487 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion.
Abstract: Rapidly increasing atmospheric CO2 concentrations threaten human society, the natural environment, and the synergy between the two. In order to ameliorate the CO2 problem, carbon capture and conversion techniques have been proposed. Metal–organic framework (MOF)-based materials, a relatively new class of porous materials with unique structural features, high surface areas, chemical tunability and stability, have been extensively studied with respect to their applicability to such techniques. Recently, it has become apparent that the CO2 capture capabilities of MOF-based materials significantly boost their potential toward CO2 conversion. Furthermore, MOF-based materials’ well-defined structures greatly facilitate the understanding of structure–property relationships and their roles in CO2 capture and conversion. In this review, we provide a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion. Special emphases on the relationships between CO2 capture capacities of MOF-based materials and their catalytic CO2 conversion performances are discussed.

1,378 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: In this article, the pyrolysis process for each type of plastics and the main process parameters that influenced the final end product such as oil, gaseous and char were reviewed.

1,150 citations