scispace - formally typeset
Search or ask a question
Author

Pedro J. García-Laencina

Bio: Pedro J. García-Laencina is an academic researcher from United States Air Force Academy. The author has contributed to research in topics: Missing data & Artificial neural network. The author has an hindex of 11, co-authored 25 publications receiving 1381 citations. Previous affiliations of Pedro J. García-Laencina include Universidad Politécnica de Cartagena.

Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.
Abstract: Pattern classification has been successfully applied in many problem domains, such as biometric recognition, document classification or medical diagnosis. Missing or unknown data are a common drawback that pattern recognition techniques need to deal with when solving real-life classification tasks. Machine learning approaches and methods imported from statistical learning theory have been most intensively studied and used in this subject. The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.

625 citations

Journal ArticleDOI
TL;DR: The method based on machine learning techniques were the most suited for the imputation of missing values and led to a significant enhancement of prognosis accuracy compared to imputation methods based on statistical procedures.

401 citations

Journal ArticleDOI
TL;DR: This article proposes a novel KNN imputation procedure using a feature-weighted distance metric based on mutual information (MI), which provides a missing data estimation aimed at solving the classification task.

193 citations

Journal ArticleDOI
TL;DR: This research work analyzes a real breast cancer dataset from Institute Portuguese of Oncology of Porto with a high percentage of unknown categorical information and constructed prediction models for breast cancer survivability using K-Nearest Neighbors, Classification Trees, Logistic Regression and Support Vector Machines.

120 citations

Journal ArticleDOI
TL;DR: An efficient embedded approach for feature selection and linear discrimination of EEG signals is presented, which efficiently selects and combines the most useful features for classification with less computational requirements.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
17 May 2013
TL;DR: This research presents a novel and scalable approach called “Smartfitting” that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of designing and implementing statistical models for regression models.
Abstract: General Strategies.- Regression Models.- Classification Models.- Other Considerations.- Appendix.- References.- Indices.

3,672 citations

Journal ArticleDOI
TL;DR: It is concluded that multiple Imputation for Nonresponse in Surveys should be considered as a legitimate method for answering the question of why people do not respond to survey questions.
Abstract: 25. Multiple Imputation for Nonresponse in Surveys. By D. B. Rubin. ISBN 0 471 08705 X. Wiley, Chichester, 1987. 258 pp. £30.25.

3,216 citations

Book
29 Mar 2012
TL;DR: The problem of missing data concepts of MCAR, MAR and MNAR simple solutions that do not (always) work multiple imputation in a nutshell and some dangers, some do's and some don'ts are covered.
Abstract: Basics Introduction The problem of missing data Concepts of MCAR, MAR and MNAR Simple solutions that do not (always) work Multiple imputation in a nutshell Goal of the book What the book does not cover Structure of the book Exercises Multiple imputation Historic overview Incomplete data concepts Why and when multiple imputation works Statistical intervals and tests Evaluation criteria When to use multiple imputation How many imputations? Exercises Univariate missing data How to generate multiple imputations Imputation under the normal linear normal Imputation under non-normal distributions Predictive mean matching Categorical data Other data types Classification and regression trees Multilevel data Non-ignorable methods Exercises Multivariate missing data Missing data pattern Issues in multivariate imputation Monotone data imputation Joint Modeling Fully Conditional Specification FCS and JM Conclusion Exercises Imputation in practice Overview of modeling choices Ignorable or non-ignorable? Model form and predictors Derived variables Algorithmic options Diagnostics Conclusion Exercises Analysis of imputed data What to do with the imputed data? Parameter pooling Statistical tests for multiple imputation Stepwise model selection Conclusion Exercises Case studies Measurement issues Too many columns Sensitivity analysis Correct prevalence estimates from self-reported data Enhancing comparability Exercises Selection issues Correcting for selective drop-out Correcting for non-response Exercises Longitudinal data Long and wide format SE Fireworks Disaster Study Time raster imputation Conclusion Exercises Extensions Conclusion Some dangers, some do's and some don'ts Reporting Other applications Future developments Exercises Appendices: Software R S-Plus Stata SAS SPSS Other software References Author Index Subject Index

2,156 citations