scispace - formally typeset
Search or ask a question

Showing papers by "Pedro J. J. Alvarez published in 1991"


Journal ArticleDOI
TL;DR: In this paper, the degradation of benzene, toluene, and p-xylene was investigated in sandy aquifer material and by two pure cultures isolated from the same site.
Abstract: Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene and p-xylene by the presence of toluene in Pseudomonas sp. strain CFS-215 incubations, as well as benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds.

350 citations


Journal ArticleDOI
TL;DR: Monod's equation adequately described aerobic biodegradation rates of benzene and toluene by the microbial population of a sandy aquifer when these compounds were initially present at concentrations lower than 100 mg/l each.
Abstract: Monod's equation adequately described aerobic biodegradation rates of benzene and toluene by the microbial population of a sandy aquifer when these compounds were initially present at concentrations lower than 100 mg/l each. Concentrations higher than 100 mg/l were inhibitory, and no benzene or toluene degradation was observed when these compounds were initially present at 250 mg/l each. The Monod coefficients were calculated as k = 8.3 g-benzene/g-cells/day and Ks = 12.2 mg/l for benzene, and k = 9.9 g-toluene/g-cells/day and Ks = 17.4 mg/l for toluene. Specific first-order coefficients would be 0.68 l/mg.day for benzene and 0.57 l.mg.day for toluene.

131 citations