scispace - formally typeset
Search or ask a question
Author

Pedro J. J. Alvarez

Bio: Pedro J. J. Alvarez is an academic researcher from Rice University. The author has contributed to research in topics: Bioremediation & Medicine. The author has an hindex of 89, co-authored 378 publications receiving 34837 citations. Previous affiliations of Pedro J. J. Alvarez include University of Minnesota & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre-drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania to identify three factors, which offer strong predictive power regarding the natural occurrence of high methane concentrations.
Abstract: The recent boom in shale gas development in the Marcellus Shale has increased interest in the methods to distinguish between naturally occurring methane in groundwater and stray methane associated with drilling and production operations. This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre-drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania. Higher natural methane concentrations in residential wells are strongly associated with reducing conditions characterized by low nitrate and low sulfate ([NO3- ] < 0.5 mg/L; [SO42- ] < 2.5 mg/L). However, no significant relationship exists between methane and iron [Fe(II)], which is traditionally considered an indicator of conditions that have progressed through iron reduction. As shown in previous studies, water type is significantly correlated with natural methane concentrations, where sodium (Na) -rich waters exhibit significantly higher (p<0.001) natural methane concentrations than calcium (Ca)-rich waters. For water wells exhibiting Na-rich waters and/or low nitrate and low sulfate conditions, valley locations are associated with higher methane concentrations than upland topography. Consequently, we identify three factors ("Low NO3- & SO42- " redox condition, Na-rich water type, and valley location), which, in combination, offer strong predictive power regarding the natural occurrence of high methane concentrations. Samples exhibiting these three factors have a median methane concentration of 10,000 µg/L. These heuristic relationships may facilitate the design of pre-drill monitoring programs and the subsequent evaluation of post-drill monitoring results to help distinguish between naturally occurring methane and methane originating from anthropogenic sources or migration pathways.

48 citations

Journal ArticleDOI
TL;DR: The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping.
Abstract: A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2–10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhance...

47 citations

Journal ArticleDOI
TL;DR: Results obtained corroborate that source zone reductive dechlorination of PCE is possible at near field scale and that a system bioaugmented with a competent halorespiring consortium can enhance DNAPL dissolution and de chlorination processes at significantly greater rates than in a system that is biostimulated only.
Abstract: Two 11.7-m 3 experimental controlled release systems (ECRS), packed with sandy model aquifer material and amended with tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source zone, were operated in parallel with identical flow regimes and electron donor amendments. Hydrogen Releasing Compound (Regenesis Bioremediation Products, Inc., San Clemente, California), and later dissolved lactate, served as electron donors to promote dechlorination. One ECRS was bioaugmented with an anaerobic dechlorinating consortium directly into the source zone, and the other served as a control (biostimulated only) to determine the benefits of bioaugmentation. The presence of halorespiring bacteria in the aquifer matrix before bioaugmentation, shown by nested polymerase chain reaction with phylogenetic primers, suggests that dechlorinating catabolic potential may be somewhat widespread. Results obtained corroborate that source zone reductive dechlorination of PCE is possible at near field scale and that a system bioaugmented with a competent halorespiring consortium can enhance DNAPL dissolution and dechlorination processes at significantly greater rates than in a system that is biostimulated only.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed an efficient Fenton-like system by using calcium peroxide/biochar composites as oxidants and tartaric acid-chelated Fe(III) as catalysts, and tested it for enhanced O2•--based Fe(II) regeneration and faster sulfamethoxazole (SMX) degradation.

47 citations

Journal ArticleDOI
TL;DR: Using microtiter plate and quantitative reverse transcriptase polymerase chain reaction assays, it is shown that sub-millimolar concentrations of nickel and cadmium inhibit biofilm formation by the bacterium Burkholderia multivorans through the inhibition of acyl-homoserine lactone quorum sensing.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: In this paper, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed.
Abstract: Fenton chemistry encompasses reactions of hydrogen peroxide in the presence of iron to generate highly reactive species such as the hydroxyl radical and possibly others. In this review, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed. The review covers modified versions including the photoassisted Fenton reaction, use of chelated iron, electro-Fenton reactions, and Fenton reactions using heterogeneous catalysts. Sections are devoted to nonclassical pathways, by-products, kinetics and process modeling, experimental design methodology, soil and aquifer treatment, use of Fenton in combination with other advanced oxidation processes or biodegradation, economic comparison with other advanced oxidation processes, and case studies.

3,218 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations

Journal ArticleDOI
TL;DR: The technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed and it is evident from the literature survey of about 100 papers that low- cost adsorbent have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon.

3,072 citations