scispace - formally typeset
Search or ask a question
Author

Pedro J. J. Alvarez

Bio: Pedro J. J. Alvarez is an academic researcher from Rice University. The author has contributed to research in topics: Bioremediation & Medicine. The author has an hindex of 89, co-authored 378 publications receiving 34837 citations. Previous affiliations of Pedro J. J. Alvarez include University of Minnesota & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.
Abstract: Toluene dioxygenase (TDO) is ubiquitous in nature and has a broad substrate range, including benzene, toluene, ethylbenzene and xylenes (BTEX). Pseudomonas putida F1 (PpF1) induced on toluene is known to produce indigo from indole through the activity of TDO. In this work, a spectrophotometric assay previously developed to measure indole to indigo production rates was modified to characterize the effects of various ethanol concentrations on toluene aerobic biodegradation activity and assess catabolite repression of TDO. Indigo production rate by cells induced on toluene alone was 0.0012 ± 0.0006 OD610 min−1. The presence of ethanol did not fully repress TDO activity when toluene was also available as a carbon source. However, indigo production rates by PpF1 grown on ethanol:toluene mixtures (3:1 w/w) decreased by approximately 50%. Overall, the proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.

8 citations

Journal ArticleDOI
TL;DR: A high-throughput sequencing study that corroborates extensive ARG exchange between wild bird feces and their habitats and implies the need to scrutinize high-mobility birds as potential vectors for global propagation of ARGs.
Abstract: Wild birds are known to harbor and discharge antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). However, assessments of their contribution to the dissemination of antibiotic resistance in the environment are limited to culture-dependent bacterial snapshots. Here, we present a high-throughput sequencing study that corroborates extensive ARG exchange between wild bird feces and their habitats and implies the need to scrutinize high-mobility birds as potential vectors for global propagation of ARGs. We characterized the resistome (281 ARGs) and microbiome of seven wild bird species and their terrestrial and aquatic habitats. The resistomes of bird feces were influenced by the microbial community structure, mobile genetic elements (MGEs), and residual antibiotics. We designated 33 ARGs found in more than 90% of the bird fecal samples as core ARGs of wild bird feces, among which 16 ARGs were shared as core ARGs in both wild bird feces and their habitats; these genes represent a large proportion of both the bird feces (35.0 ± 15.9%) and the environmental resistome (29.9 ± 21.4%). One of the most detected β-lactam resistance genes (blaTEM, commonly harbored by multidrug resistant "superbugs") was used as molecular marker to demonstrate the high interconnectivity of ARGs between the microbiomes of wild birds and their habitats. Overall, this work provides a comprehensive analysis of the wild bird resistome and underscores the importance to consider genetic exchange between animals and the environment in the One Health approach.

8 citations

Book ChapterDOI
01 Jan 2013
TL;DR: This chapter views Earth-scale systems from five viewpoints: knowledge systems, monitoring systems, communication systems, management systems and tools, and Earth- scale and other contributing technologies, including robotics.
Abstract: Earth-scale convergence systems comprise dynamic, complex, and interrelated environmental Earth-scale systems, energy production and consumption systems, and man-made technological systems such as telecommunications and various metropolitan and agricultural infrastructure systems. This chapter views Earth-scale systems from five viewpoints: knowledge systems, monitoring systems, communication systems, management systems and tools, and Earth-scale and other contributing technologies, including robotics. Ideally, convergence-based technological solutions to Earth-scale systems problems can be found that do not have serious political, social, or economic repercussions, but it is far more likely that difficult tradeoffs will have to be made in decision-making at local, national, and international levels. Sustainability is an increasingly important concept being incorporated into society’s thinking about technological solutions to Earth-scale problems. Improving data and modeling capabilities, monitoring (including spaced-based) and communication systems, and collaboration and management tools will be critical.

7 citations

01 Jan 2016
TL;DR: In this article, the current state of brackish groundwater use and development in the United States is described, and a brief overview of the state of the water resources is given.
Abstract: This issue brief describes the current state of brackish groundwater use and development in the United States. Development of brackish groundwater, if carried out responsibly, can augment supplies and relieve growing stress on freshwater resources.

7 citations

Journal ArticleDOI
TL;DR: In this paper , partial oxidation of nanoparticulate mackinawite (FeS) significantly enhances its capability in sequestering Cr(VI), likely due to preferential inner-sphere complexation of Cr (VI) oxyanions to ferric over ferrous iron.
Abstract: Iron sulfide nanoparticles (nano-FeS) have shown great potential for in situ remediation of Cr(VI) pollution by reducing Cr(VI) to the less soluble and toxic Cr(III). However, material oxidation that inevitably occurs during storage and application alters its reactivity. Herein, we show that partial oxidation of nanoparticulate mackinawite (FeS) significantly enhances its capability in sequestering Cr(VI). Oxidation of nano-FeS increases its binding affinity to Cr(VI), likely due to preferential inner-sphere complexation of Cr(VI) oxyanions to ferric over ferrous iron in mackinawite/lepidocrocite (FeS/γ-FeOOH) nanocomposites. A trade-off is that oxidation mitigates Cr(VI) reduction by lowering the electron-donating potential of the material and the electron transfer at a solution-material interface and consequently hinders the transformation of adsorbed Cr(VI) to Cr(III). Notably, the rate-limiting step of Cr(VI) sequestration transitions from adsorption to reduction during oxidation, as demonstrated with batch experiments coupled with kinetic modeling. Thus, an optimum oxidation degree exists, wherein the gain in the overall performance from enhanced adsorption overcompensates the loss from inhibited reduction, resulting in maximum sequestration of aqueous Cr(VI) as solid-phase Cr(III). Our findings inform better assessment and design of nanomaterials for Cr(VI) remediation and may be extended to interactions of other oxyanions with natural and engineered nanoparticles during oxidative aging.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: In this paper, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed.
Abstract: Fenton chemistry encompasses reactions of hydrogen peroxide in the presence of iron to generate highly reactive species such as the hydroxyl radical and possibly others. In this review, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed. The review covers modified versions including the photoassisted Fenton reaction, use of chelated iron, electro-Fenton reactions, and Fenton reactions using heterogeneous catalysts. Sections are devoted to nonclassical pathways, by-products, kinetics and process modeling, experimental design methodology, soil and aquifer treatment, use of Fenton in combination with other advanced oxidation processes or biodegradation, economic comparison with other advanced oxidation processes, and case studies.

3,218 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations

Journal ArticleDOI
TL;DR: The technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed and it is evident from the literature survey of about 100 papers that low- cost adsorbent have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon.

3,072 citations