scispace - formally typeset
Search or ask a question
Author

Pedro Rodriguez

Other affiliations: Federal University of Pernambuco, Aalborg University, Vestas  ...read more
Bio: Pedro Rodriguez is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: AC power & Electric power system. The author has an hindex of 67, co-authored 496 publications receiving 24551 citations. Previous affiliations of Pedro Rodriguez include Federal University of Pernambuco & Aalborg University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Book
21 Feb 2011
TL;DR: In this article, the authors present an overview of the Grid Converter and its application in photovoltaic (PV) power converters, including the following: 1.1 Introduction. 2.3 Inverter Structures Derived from H-Bridge Topology. 3.4 Power Quality. 4.5 Adaptive Filtering.
Abstract: About the Authors. Preface. Acknowledgements. 1 Introduction. 1.1 Wind Power Development. 1.2 Photovoltaic Power Development. 1.3 The Grid Converter The Key Element in Grid Integration of WT and PV Systems. 2 Photovoltaic Inverter Structures. 2.1 Introduction. 2.2 Inverter Structures Derived from H-Bridge Topology. 2.3 Inverter Structures Derived from NPC Topology. 2.4 Typical PV Inverter Structures. 2.5 Three-Phase PV Inverters. 2.6 Control Structures. 2.7 Conclusions and Future Trends. 3 Grid Requirements for PV. 3.1 Introduction. 3.2 International Regulations. 3.3 Response to Abnormal Grid Conditions. 3.4 Power Quality. 3.5 Anti-islanding Requirements. 3.6 Summary. 4 Grid Synchronization in Single-Phase Power Converters. 4.1 Introduction. 4.2 Grid Synchronization Techniques for Single-Phase Systems. 4.3 Phase Detection Based on In-Quadrature Signals. 4.4 Some PLLs Based on In-Quadrature Signal Generation. 4.5 Some PLLs Based on Adaptive Filtering. 4.6 The SOGI Frequency-Locked Loop. 4.7 Summary. 5 Islanding Detection. 5.1 Introduction. 5.2 Nondetection Zone. 5.3 Overview of Islanding Detection Methods. 5.4 Passive Islanding Detection Methods. 5.5 Active Islanding Detection Methods. 5.6 Summary. 6 Grid Converter Structures forWind Turbine Systems. 6.1 Introduction. 6.2 WTS Power Configurations. 6.3 Grid Power Converter Topologies. 6.4 WTS Control. 6.5 Summary. 7 Grid Requirements for WT Systems. 7.1 Introduction. 7.2 Grid Code Evolution. 7.3 Frequency and Voltage Deviation under Normal Operation. 7.4 Active Power Control in Normal Operation. 7.5 Reactive Power Control in Normal Operation. 7.6 Behaviour under Grid Disturbances. 7.7 Discussion of Harmonization of Grid Codes. 7.8 Future Trends. 7.9 Summary. 8 Grid Synchronization in Three-Phase Power Converters. 8.1 Introduction. 8.2 The Three-Phase Voltage Vector under Grid Faults. 8.3 The Synchronous Reference Frame PLL under Unbalanced and Distorted Grid Conditions. 8.4 The Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL). 8.5 The Double Second-Order Generalized Integrator FLL (DSOGI-FLL). 8.6 Summary. 9 Grid Converter Control for WTS. 9.1 Introduction. 9.2 Model of the Converter. 9.3 AC Voltage and DC Voltage Control. 9.4 Voltage Oriented Control and Direct Power Control. 9.5 Stand-alone, Micro-grid, Droop Control and Grid Supporting. 9.6 Summary. 10 Control of Grid Converters under Grid Faults. 10.1 Introduction. 10.2 Overview of Control Techniques for Grid-Connected Converters under Unbalanced Grid Voltage Conditions. 10.3 Control Structures for Unbalanced Current Injection. 10.4 Power Control under Unbalanced Grid Conditions. 10.5 Flexible Power Control with Current Limitation. 10.6 Summary. 11 Grid Filter Design. 11.1 Introduction. 11.2 Filter Topologies. 11.3 Design Considerations. 11.4 Practical Examples of LCL Filters and Grid Interactions. 11.5 Resonance Problem and Damping Solutions. 11.6 Nonlinear Behaviour of the Filter. 11.7 Summary. 12 Grid Current Control. 12.1 Introduction. 12.2 Current Harmonic Requirements. 12.3 Linear Current Control with Separated Modulation. 12.4 Modulation Techniques. 12.5 Operating Limits of the Current-Controlled Converter. 12.6 Practical Example. 12.7 Summary. Appendix A Space Vector Transformations of Three-Phase Systems. A.1 Introduction. A.2 Symmetrical Components in the Frequency Domain. A.3 Symmetrical Components in the Time Domain. A.4 Components 0 on the Stationary Reference Frame. A.5 Components dq0 on the Synchronous Reference Frame. Appendix B Instantaneous Power Theories. B.1 Introduction. B.2 Origin of Power Definitions at the Time Domain for Single-Phase Systems. B.3 Origin of Active Currents in Multiphase Systems. B.4 Instantaneous Calculation of Power Currents in Multiphase Systems. B.5 The p-q Theory. B.6 Generalization of the p-q Theory to Arbitrary Multiphase Systems. B.7 The Modified p-q Theory. B.8 Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. B.9 Summary. Appendix C Resonant Controller. C.1 Introduction. C.2 Internal Model Principle. C.3 Equivalence of the PI Controller in the dq Frame and the P+Resonant Controller in the Frame. Index.

2,509 citations

Journal ArticleDOI
TL;DR: In this article, a decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL) was proposed to detect the fundamental-frequency positive-sequence component of the utility voltage under unbalanced and distorted conditions.
Abstract: This paper deals with a crucial aspect in the control of grid-connected power converters, i.e., the detection of the fundamental-frequency positive-sequence component of the utility voltage under unbalanced and distorted conditions. Specifically, it proposes a positive-sequence detector based on a new decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL), which completely eliminates the detection errors of conventional synchronous reference frame PLL's (SRF-PLL). This is achieved by transforming both positive- and negative-sequence components of the utility voltage into the double SRF, from which a decoupling network is developed in order to cleanly extract and separate the positive- and negative-sequence components. The resultant DDSRF-PLL conducts then to a fast, precise, and robust positive-sequence voltage detection even under unbalanced and distorted grid conditions. The paper presents a detailed description and derivation of the proposed detection method, together with an extensive evaluation using simulation and experimental results from a digital signal processor-based laboratory prototype in order to verify and validate the excellent performance achieved by the DDSRF-PLL

1,169 citations

Journal ArticleDOI
TL;DR: A new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies is presented.
Abstract: This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies. The proposed system is called MSOGI-FLL since it is based on both a harmonic decoupling network consisting of multiple second-order generalized integrators (MSOGIs) and a frequency-locked loop (FLL), which makes the system frequency adaptive. In this paper, the MSOGI-FLL is analyzed for single- and three-phase applications, deducing some key expressions regarding its stability and tuning. Moreover, the performance of the MSOGI-FLL is evaluated by both simulations and experiments to show its capability for detecting different harmonic components in a highly polluted grid scenario.

950 citations

Journal ArticleDOI
TL;DR: In this article, the performance of linear controllers such as proportional-integral, proportional-resonant, and deadbeat (DB) controllers for grid-connected distributed power generation systems has been evaluated.
Abstract: This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions. First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results in each case are presented in order to evaluate the performance of the controllers.

886 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations

Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.

3,811 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations