scispace - formally typeset
Search or ask a question
Author

Peer Nobert Jørgensen

Bio: Peer Nobert Jørgensen is an academic researcher from Novo Nordisk. The author has contributed to research in topics: Insulin & Somatostatin. The author has an hindex of 3, co-authored 3 publications receiving 261 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: GLP secretion is tonically inhibited by a local release of SS28 from epithelial paracrine cells, whereas SS14, supposedly derived from enteric neurons, only weakly influences GLP secretion.
Abstract: Suspecting that paracrine inhibition might influence neuronal regulation of the endocrine L cells, we studied the role of somatostatin (SS) in the regulation of the secretion of the proglucagon-der...

144 citations

Journal ArticleDOI
TL;DR: Gl glucagon is partly responsible for maintenance of euglycemia in fed rats, whereas during fasting it plays a limited role, however, immunoneutralization of glucagon reduces insulin secretion irrespective of blood glucose.
Abstract: The role of glucagon in the regulation of blood glucose in fed and fasted anesthetized rats was studied by injecting intravenously 4 ml/kg of a high-capacity (40 nmol/ml) high-affinity (0.6 x 10(11...

74 citations

Journal ArticleDOI
TL;DR: The insulin aspart-specific enzyme-linked immunosorbent assay described in this study is well suited to study the bioavailability, bioequivalence, and pharmacokinetics of this insulin analogue.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The main actions of GLP-1 are to stimulate insulin secretion and to inhibit glucagon secretion, thereby contributing to limit postprandial glucose excursions and acts as an enterogastrone and part of the "ileal brake" mechanism.
Abstract: Glucagon-like peptide 1 (GLP-1) is a 30-amino acid peptide hormone produced in the intestinal epithelial endocrine L-cells by differential processing of proglucagon, the gene which is expressed in ...

2,657 citations

Journal ArticleDOI
TL;DR: The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.
Abstract: In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of β-cell apoptosis. Native GLP-1 is degraded within ~2-3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.

976 citations

Journal ArticleDOI
TL;DR: As a counterregulatory hormone for insulin, glucagon plays a critical role in maintaining glucose homeostasis in vivo in both animals and humans and has been pursued extensively in recent years as potential targets for the therapeutic treatment of diabetes.
Abstract: As a counterregulatory hormone for insulin, glucagon plays a critical role in maintaining glucose homeostasis in vivo in both animals and humans. To increase blood glucose, glucagon promotes hepatic glucose output by increasing glycogenolysis and gluconeogenesis and by decreasing glycogenesis and glycolysis in a concerted fashion via multiple mechanisms. Compared with healthy subjects, diabetic patients and animals have abnormal secretion of not only insulin but also glucagon. Hyperglucagonemia and altered insulin-to-glucagon ratios play important roles in initiating and maintaining pathological hyperglycemic states. Not surprisingly, glucagon and glucagon receptor have been pursued extensively in recent years as potential targets for the therapeutic treatment of diabetes.

797 citations

Journal ArticleDOI
TL;DR: Two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in type 2 diabetes (T2DM) and an incretIn enhancer (sitagliptin, which is a DPP4 inhibitor).
Abstract: Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d'etre is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to beta-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.

716 citations

Journal ArticleDOI
TL;DR: The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Abstract: Background The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. Scope of review In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. Major conclusions Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders

679 citations