scispace - formally typeset
Search or ask a question
Author

Pei Chun Chen

Bio: Pei Chun Chen is an academic researcher from National Cheng Kung University. The author has contributed to research in topics: Potassium channel & Sulfonylurea receptor. The author has an hindex of 20, co-authored 32 publications receiving 1826 citations. Previous affiliations of Pei Chun Chen include Chang Gung University & Oregon Health & Science University.

Papers
More filters
Journal ArticleDOI
TL;DR: This work hypothesizes that Nrf2–ARE activation is a novel neuroprotective pathway that confers resistance to a variety of oxidative, stress‐related, neurodegenerative insults and transplanted NRF2‐overexpressing astrocytes into the mouse striatum prior to lesioning with malonate to lead to dramatic protection against malonated neurotoxicity.
Abstract: Transcriptional activation of protective genes is mediated by a cis-acting element called the antioxidant responsive element (ARE). The transcription factor Nrf2 (NF-E2-related factor 2) binds to the ARE. Activation of this pathway protects cells from oxidative stress-induced cell death. Increased oxidative stress is associated with neuronal cell death during the pathogenesis of multiple chronic neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We hypothesize that Nrf2-ARE activation is a novel neuroprotective pathway that confers resistance to a variety of oxidative, stress-related, neurodegenerative insults. In recent studies, primary neuronal cultures treated with chemical activators of the Nrf2-ARE pathway displayed significantly greater resistance to oxidative stress-induced neurotoxicity. Similar cultures generated from ARE-hPAP reporter mice demonstrated selective activation of the Nrf2-ARE pathway in astrocytes, suggesting that Nrf2 activation in astrocytes somehow confers resistance to naive neurons. Further, in chemical models of neurodegeneration, Nrf2 knockout mice are significantly more sensitive to mitochondrial complex I and II inhibitors. Combining these observations with the results implying that the astrocyte is central to Nrf2-ARE-mediated neuroprotection, we transplanted Nrf2-overexpressing astrocytes into the mouse striatum prior to lesioning with malonate. This procedure led to dramatic protection against malonate-induced neurotoxicity. Translating this to other chemical and genetic models of neurodegeneration will be discussed.

526 citations

Journal ArticleDOI
TL;DR: Stark results indicate that Nrf2 expression restricted to astrocytes is sufficient to protect against MPTP andAstrocytic modulation of the NRF2-ARE pathway is a promising target for therapeutics aimed at reducing or preventing neuronal death in PD.
Abstract: Oxidative stress has been implicated in the etiology of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. It is known that under conditions of oxidative stress, the transcription factor NF-E2-related factor (Nrf2) binds to antioxidant response element (ARE) to induce antioxidant and phase II detoxification enzymes. To investigate the role of Nrf2 in the process of MPTP-induced toxicity, mice expressing the human placental alkaline phosphatase (hPAP) gene driven by a promoter containing a core ARE sequence (ARE-hPAP) were used. ARE-hPAP mice were injected (30 mg/kg) once per day for 5 days and killed 7 days after the last MPTP injection. In response to this design, ARE-dependent gene expression was decreased in striatum whereas it was increased in substantia nigra. The same MPTP protocol was applied in Nrf2(+/+) and Nrf2(-/-) mice; Nrf2 deficiency increases MPTP sensitivity. Furthermore, we evaluated the potential for astrocytic Nrf2 overexpression to protect from MPTP toxicity. Transgenic mice with Nrf2 under control of the astrocyte-specific promoter for the glial fribillary acidic protein (GFAP-Nrf2) on both a Nrf2(+/+) and Nrf2(-/-) background were administered MPTP. In the latter case, only the astrocytes expressed Nrf2. Independent of background, MPTP-mediated toxicity was abolished in GFAP-Nrf2 mice. These striking results indicate that Nrf2 expression restricted to astrocytes is sufficient to protect against MPTP and astrocytic modulation of the Nrf2-ARE pathway is a promising target for therapeutics aimed at reducing or preventing neuronal death in PD.

523 citations

Journal ArticleDOI
TL;DR: A mechanism whereby Nrf2 activation can coordinate astrocyte glutathione release with neuronal glutathion synthesis through transcriptional upregulation of neuronal EAAT3 expression is identified.
Abstract: Astrocytes support neuronal antioxidant capacity by releasing glutathione, which is cleaved to cysteine in brain extracellular space. Free cysteine is then taken up by neurons through excitatory amino acid transporter 3 [EAAT3; also termed Slc1a1 (solute carrier family 1 member 1)] to support de novo glutathione synthesis. Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway by oxidative stress promotes astrocyte release of glutathione, but it remains unknown how this release is coupled to neuronal glutathione synthesis. Here we evaluated transcriptional regulation of the neuronal cysteine transporter EAAT3 by the Nrf2-ARE pathway. Nrf2 activators and Nrf2 overexpression both produced EAAT3 transcriptional activation in C6 cells. A conserved ARE-related sequence was found in the EAAT3 promoter of several mammalian species. This ARE-related sequence was bound by Nrf2 in mouse neurons in vivo as observed by chromatin immunoprecipitation. Chemical activation of the Nrf2-ARE pathway in mouse brain increased both neuronal EAAT3 levels and neuronal glutathione content, and these effects were abrogated in mice genetically deficient in either Nrf2 or EAAT3. Selective overexpression of Nrf2 in brain neurons by lentiviral gene transfer was sufficient to upregulate both neuronal EAAT3 protein and glutathione content. These findings identify a mechanism whereby Nrf2 activation can coordinate astrocyte glutathione release with neuronal glutathione synthesis through transcriptional upregulation of neuronal EAAT3 expression.

96 citations

Journal Article
TL;DR: This review outlines the cellular pathways that have been demonstrated to participate in psychostimulant addiction, focused particularly in the nucleus accumbens, and implies that a signal cascade down-stream of both dopamine D1 and D2 receptors comprises the mainstay of the addiction network.
Abstract: Drug addiction represents a pathological form of neuroplasticity along with the emergence of aberrant behaviors involving a cascade of neurochemical changes mainly in the brain's rewarding circuitry. The aberrant behavioral phenotypes can be assessed by an animal model of drug-induced behavioral sensitization, which is characterized by an initiation stage that is formed in the ventral tegmental area and a behavioral expression stage determined mainly in the nucleus accumbens. Numerous studies during past decades demonstrate that the mesocorticolimbic dopamine pathway plays an essential role in the development of behavioral sensitization. Moreover, a series of cellular signaling pathways and gene expression determine the severity of addictive behaviors. In addition to the well-characterized dopamine D1 receptor-mediated cAMP/protein kinase A up-regulation in the nucleus accumbens, recent reports indicate the cellular mediator dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and transcription regulator DeltaFosB are associated with the accumbal PKA pathway to modulate the development of behavioral sensitization. The finding of cAMP-independent and dopamine D2 receptor-mediated Akt/GSK3 in activation in the nucleus accumbens of behaviorally sensitized animals implies that a signal cascade down-stream of both dopamine D1 and D2 receptors comprises the mainstay of the addiction network. This review outlines the cellular pathways that have been demonstrated to participate in psychostimulant addiction, focused particularly in the nucleus accumbens.

80 citations

Journal ArticleDOI
TL;DR: It is shown that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Astrocyte functions in healthy CNS, mechanisms and functions of reactive astrogliosis and glial scar formation, and ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions are reviewed.
Abstract: Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.

4,075 citations

Journal ArticleDOI
TL;DR: The authors' data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycoleytic enzyme pyruvate kinase.
Abstract: The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase This dataset will provide a powerful new resource for understanding the development and function of the brain To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://webstanfordedu/group/barres_lab/brain_rnaseqhtml) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain

3,891 citations

Journal ArticleDOI
TL;DR: The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants that controls the basal and induced expression of an array of antioxidant response element-dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure.
Abstract: Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body's needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol–based redox signaling. The nuclear factor erythroid 2–related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element–dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how...

2,987 citations

Journal ArticleDOI
TL;DR: This review summarizes knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Abstract: The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap ‘n’ Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.

1,490 citations

Journal ArticleDOI
TL;DR: The switching on and off of Nrf2 protects cells against free radical damage, prevents apoptosis, and promotes cell survival, and is a mechanism of critical importance for cellular protection and cell survival.

1,336 citations