scispace - formally typeset
Search or ask a question
Author

Peidong Yang

Bio: Peidong Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanowire & Perovskite (structure). The author has an hindex of 183, co-authored 562 publications receiving 144351 citations. Previous affiliations of Peidong Yang include Max Planck Society & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple solid state diffusion method utilizing atomic layer deposition to controllably alter the composition of metal oxide nanowires results in a tunable enhancement in the electrocatalytic activity for water oxidation, demonstrating that this simple and general method can be used to control the properties of one-dimensional nanostructures for use in a variety of applications including solar-to-fuel generation.
Abstract: The synthesis of one-dimensional nanostructures with specific properties is often hindered by difficulty in tuning the material composition without sacrificing morphology and material quality. Here, we present a simple solid state diffusion method utilizing atomic layer deposition to controllably alter the composition of metal oxide nanowires. This compositional control allows for modification of the optical, electronic, and electrochemical properties of the semiconductor nanowires. Using this method and a novel process for manganese oxide atomic layer deposition, we produced manganese-doped rutile TiO2 nanowires and investigated their structural and photoelectrochemical properties. A homogeneous incorporation of the Mn dopant into the rutile lattice was observed, and the local chemical environment of the Mn was determined using X-ray absorption spectroscopy. The doping process resulted in a tunable enhancement in the electrocatalytic activity for water oxidation, demonstrating that this simple and general method can be used to control the properties of one-dimensional nanostructures for use in a variety of applications including solar-to-fuel generation.

47 citations

Journal ArticleDOI
TL;DR: The silicon-based monolithic multinozzle emitter array (MEA) is reported and its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry and reproducible MS detection of peptides and proteins for serial MEA emitters are demonstrated.
Abstract: Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA) and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3 in. silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nan...

47 citations

Journal ArticleDOI
TL;DR: A model describing the kinetic and the thermodynamic driving forces of bacteria-nanowire interactions is proposed and Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic concentrations.
Abstract: Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic concentrations. Here, we propose a model describing the kinetic and the thermodynamic driving forces of bacteria-nanowire interactions.

47 citations

Journal ArticleDOI
TL;DR: This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces.
Abstract: This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

47 citations

Journal ArticleDOI
TL;DR: The formation of the current-rectifying p-n heterojunction in single-crystalline CsSnI3 nanowires via localized phase transition between the n-type yellow and p-type black phases is reported.
Abstract: Semiconductor p-n junctions are fundamental building blocks for modern optical and electronic devices. The p- and n-type regions are typically created by chemical doping process. Here we show that in the new class of halide perovskite semiconductors, the p-n junctions can be readily induced through a localized thermal-driven phase transition. We demonstrate this p-n junction formation in a single-crystalline halide perovskite CsSnI3 nanowire (NW). This material undergoes a phase transition from a double-chain yellow (Y) phase to an orthorhombic black (B) phase. The formation energies of the cation and anion vacancies in these two phases are significantly different, which leads to n- and p- type electrical characteristics for Y and B phases, respectively. Interface formation between these two phases and directional interface propagation within a single NW are directly observed under cathodoluminescence (CL) microscopy. Current rectification is demonstrated for the p-n junction formed with this localized thermal-driven phase transition.

44 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations