scispace - formally typeset
Search or ask a question
Author

Peidong Yang

Bio: Peidong Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanowire & Perovskite (structure). The author has an hindex of 183, co-authored 562 publications receiving 144351 citations. Previous affiliations of Peidong Yang include Max Planck Society & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
17 Feb 2022-JACS Au
TL;DR: In this paper , the authors discuss current understandings and difficulties associated with investigating such dynamic aspects of both the surface reaction site and its surrounding reaction environment as a whole, and highlight the interactive influence of the structural transformation and microenvironment on the catalytic performance of nanocatalysts.
Abstract: In the pursuit of a decarbonized society, electrocatalytic CO2 conversion has drawn tremendous research interest in recent years as a promising route to recycling CO2 into more valuable chemicals. To achieve high catalytic activity and selectivity, nanocatalysts of diverse structures and compositions have been designed. However, the dynamic structural transformation of the nanocatalysts taking place under operating conditions makes it difficult to study active site configurations present during the CO2 reduction reaction (CO2RR). In addition, although recognized as consequential to the catalytic performance, the reaction microenvironment generated near the nanocatalyst surface during CO2RR and its impact are still an understudied research area. In this Perspective, we discuss current understandings and difficulties associated with investigating such dynamic aspects of both the surface reaction site and its surrounding reaction environment as a whole. We further highlight the interactive influence of the structural transformation and the microenvironment on the catalytic performance of nanocatalysts. We also present future research directions to control the structural evolution of nanocatalysts and tailor their reaction microenvironment to achieve an ideal catalyst for improved electrochemical CO2RR.

26 citations

Journal ArticleDOI
TL;DR: It is shown that the dynamic response of atoms in copper nanoparticles to the underlying silica support at room temperature and ambient atmosphere results in the complete disappearance of supported nanoparticles over the course of only a few weeks.
Abstract: In heterogeneous catalysis, a nanoparticle (NP) system has immediate chemical surroundings with which its interaction needs to be considered, as nanoparticles are typically loaded onto certain supports. Beyond what is known about these interactions, dynamic atomic interactions between the nanoparticle and support could result from the increased energetics at the nanoscale. Here, we show that the dynamic response of atoms in copper nanoparticles to the underlying silica support at room temperature and ambient atmosphere results in the complete disappearance of supported nanoparticles over the course of only a few weeks. A quantitative study of copper nanoparticles at various size regimes (6-17 nm) revealed the significance of size-dependent nanoparticle energetics to the interaction with the support. Extended X-ray absorption fine structure is used to show that copper atoms could readily diffuse into the support to be locally surrounded by oxygen and silicon with structurally disordered outer coordination shells. Increased energetic states at the nanoscale and the energetically favorable configuration of individual copper atoms within silica, identified through EXAFS, are suggested as the cause of nanoparticle disappearance. This unexpected observation opens up new questions as to how nanoparticles interact with surrounding environments that could fundamentally change our conventional view of supported nanoparticle systems.

26 citations

Journal ArticleDOI
TL;DR: The second of a series of workshops planned in this topical area was held at NSF headquarters in Arlington, Virginia, in January 1998, and was designed to address the core of the field, describing how it has developed in the US and worldwide in the past decade, and how the members of the community saw the central thrusts of research and education in solid state chemistry proceeding in the next several years as discussed by the authors.

26 citations

Patent
14 May 2002
TL;DR: In this article, a low-cost, efficient method of preparing hierarchically ordered structures by filling a mold with a self-assembling mixture of hydrolyzed inorganic species and amphiphilic block copolymers was proposed.
Abstract: A low-cost, efficient method of preparing hierarchically ordered structures by filling a mold with a self-assembling mixture of hydrolyzed inorganic species and amphiphilic block copolymers and applying pressure to the mixture. Polymerization of the inorganic species within the mixture results in a mesoscopically structured material having molded features. A mesoporous material can be produced by subsequent thermal removal of the copolymers.

26 citations

Posted ContentDOI
17 Mar 2021-bioRxiv
TL;DR: In this article, the authors synthesize polyethyleneimine functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plant cells and show these constructs enable efficient gene knockdown.
Abstract: RNA interference (RNAi), which involves the delivery of small interfering RNA molecules (siRNA), has been used to validate target genes in plants, to understand and control cellular metabolic pathways, and as a ‘green’ alternative for crop pest tolerance. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit limitations in host plant species range and their use can result in uncontrolled DNA integration into the plant host genome. Here, we synthesize polyethyleneimine functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plant cells and show these constructs enable efficient gene knockdown. We demonstrate that functionalized AuNCs protect siRNA from RNase degradation and are small enough (~2 nm) to bypass the plant cell wall which exhibits a size exclusion limit of 5-20 nm. These AuNCs in turn enable up to 76.5 ± 5.9% GFP mRNA knockdown efficiency with no cellular toxicity. Our data suggest this simple and biocompatible platform for passive delivery of siRNA into intact plant cells could have broad applications in plant biotechnology.

26 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations