scispace - formally typeset
Search or ask a question
Author

Peidong Yang

Bio: Peidong Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanowire & Perovskite (structure). The author has an hindex of 183, co-authored 562 publications receiving 144351 citations. Previous affiliations of Peidong Yang include Max Planck Society & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the synthesis and study the stability of Cu3Au intermetallic nanowires with long-range atomic ordering, which holds the promise of unique physicochemical properties in many applications.
Abstract: Multimetallic nanowires with long-range atomic ordering hold the promise of unique physicochemical properties in many applications Here we demonstrate the synthesis and study the stability of Cu3Au intermetallic nanowires The synthesis is achieved by using Cu@Au core-shell nanowires as precursors With appropriate Cu/Au stoichiometry, the Cu@Au core-shell nanowires are transformed into fully ordered Cu3Au nanowires under thermal annealing Thermally-driven atom diffusion accounts for this transformation as revealed by X-ray diffraction and electron microscopy studies The twin boundaries abundant in the Cu@Au core-shell nanowires facilitate the ordering process The resulting Cu3Au intermetallic nanowires have uniform and accurate atomic positioning in the crystal lattice, which enhances the nobility of Cu No obvious copper oxides are observed in fully ordered Cu3Au nanowires after annealing in air at 200 °C, a temperature that is much higher than those observed in Cu@Au core-shell and pure Cu nanowires This work opens up an opportunity for further research into the development and applications of intermetallic nanowires

19 citations

Journal ArticleDOI
TL;DR: Free-standing ultra-thin films of several oxides have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV, and to photons, which demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas and solid-liquid interfaces.
Abstract: Free-standing ultrathin (∼2 nm) films of several oxides (Al2O3,TiO2, and others) have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions. The remarkable properties of such ultrathin oxides membranes enable atomic/molecular level studies of interfacial phenomena, such as corrosion, catalysis, electrochemical reactions, energy storage, geochemistry, and biology, in a broad range of environmental conditions.

17 citations

Posted Content
TL;DR: A policy case for a global project on artificial photosynthesis including its scientific justification, potential governance structure and funding mechanisms is made in this article, where the authors propose a governance structure for the project.
Abstract: A policy case is made for a global project on artificial photosynthesis including its scientific justification, potential governance structure and funding mechanisms.

17 citations

Journal ArticleDOI
TL;DR: In this paper, an epitaxial casting method was used to synthesize single-crystalline, high surface area (Ga1-xZnx)(N 1-xOx) nanotubes with ZnO compositions up to x=0.10.
Abstract: Recently, (Ga1-xZnx)(N1-xOx) has gained widespread attention as a comparatively high efficiency photocatalyst for visible-light-driven overall water splitting. Despite significant gains in efficiency over the past several years, a majority of the photogenerated carriers recombine within bulk powders. To improve the photocatalytic activity, we used an epitaxial casting method to synthesize single-crystalline, high surface area (Ga1-xZnx)(N1-xOx) nanotubes with ZnO compositions up to x=0.10. Individual nanotubes showed improved homogeneity over powder samples due to a well defined epitaxial interface for ZnO diffusion into GaN. Absorption measurements showed that the ZnO incorporation shifts the absorption into the visible region with a tail out to 500 nm. Gas chromatography (GC) was used to compare the solar water splitting activity of (Ga1-xZnx)(N1-xOx) nanotubes (x=0.05–0.10) with similar composition powders. Cocatalyst decorated samples were dispersed in aqueous solutions of CH3OH and AgO2CCH3 to monitor the H+ reduction and H2O oxidation half reactions, respectively. The nanotubes were found to have approximately 1.5–2 times higher photocatalytic activity than similar composition powders for the rate limiting H+ reduction half reaction. These results demonstrate that improvements in homogeneity and surface area using the nanotube geometry can enhance the photocatalytic activity of GaN:ZnO for solar water splitting.

17 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations