scispace - formally typeset
Search or ask a question
Author

Peidong Yang

Bio: Peidong Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanowire & Perovskite (structure). The author has an hindex of 183, co-authored 562 publications receiving 144351 citations. Previous affiliations of Peidong Yang include Max Planck Society & University of California, Santa Barbara.


Papers
More filters
Proceedings ArticleDOI
25 Jun 2002
TL;DR: In this paper, a novel vapor-liquid solid epitaxy (VLSE) process has been developed to synthesize high-density semiconductor nanowire arrays, which generally are single crystalline and have diameters of 10-200 nm and aspect ratios of 10 -100.
Abstract: A novel vapor-liquid-solid epitaxy (VLSE) process has been developed to synthesize high-density semiconductor nanowire arrays. The nanowires generally are single crystalline and have diameters of 10-200 nm and aspect ratios of 10-100. The areal density of the array can be readily approach 1010 cm-2. Results based on Si and ZnO nanowire systems are reported here.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

11 citations

Journal ArticleDOI
30 Aug 2021
TL;DR: In this paper, the phase boundaries of mixed Au and Ir catalysts were formed on carbon paper electrodes, which underwent structural evolution under the OER environment to form an Au-Ir interface-rich structure.
Abstract: Electrochemical water splitting operated under acidic conditions provides a clean approach to generate hydrogen fuels. Currently, the sluggish kinetics of oxygen evolution reaction (OER) at the anode is a bottleneck limiting the acidic water splitting. Here, we report that the OER activity of Ir, one of the most commonly used OER catalysts, can be boosted by forming phase boundaries with Au. Mixed Au and Ir catalysts were synthesized on carbon paper electrodes, which underwent structural evolution under the OER environment to form an Au-Ir interface-rich structure. Compared with Ir catalyst, which requires an overpotential of ∼393 mV to achieve a current density of 10 mA/cm2 in 0.1 M HClO4 electrolyte, the evolved Au-Ir catalyst shows a lower overpotential at ∼351 mV. X-ray photoelectronic spectrum (XPS) study, in conjunction with electrochemical analysis on the surface-site-normalized activity, reveals that the improved OER performance is due to the presence of Au/Ir interfaces in the catalysts. In addition to Ir, the strategy of accelerating OER via Au/Ir interfaces has been further applied to IrCo, IrNi, and IrCu alloy catalysts. With the broad applicability of the strategy demonstrated, this study opens a new route to design OER catalysts for efficient acidic water splitting.

11 citations

Patent
20 Dec 2013
TL;DR: In this paper, a plurality of emitters with sharpened nozzles was proposed for separating proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.
Abstract: The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.

10 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss two approaches to nanowire-based chemical and biological detection, which operate in solution with an optical, rather than electrical, readout, and exploit the excellent waveguiding ability of high-refractive-index nanowires.
Abstract: Chemical nanosensors based on inorganic nanowires hold promise for the extremely sensitive, direct detection of pollutants, toxins and biomolecules on platforms small enough to be integrated on optoelectronic chips or even deployed in living organisms. This paper discusses two approaches to nanowire-based chemical and biological detection. First we review the development of electrically-driven nanowire gas sensors that function by an adsorbate-mediated conductivity mechanism. We then describe an alternative sensing strategy that exploits the excellent waveguiding ability of high-refractive-index nanowires to create subwavelength evanescent wave sensors that operate in solution with an optical, rather than electrical, readout.

10 citations

Proceedings ArticleDOI
01 Jan 2003
TL;DR: In this article, the authors report on the fabrication and characterization of two prototype thermoelectric devices constructed of either silicon (Si) or bismuth telluride (Bi2 Te3 ) nanowire arrays.
Abstract: This study reports on the fabrication and characterization of two prototype thermoelectric devices constructed of either silicon (Si) or bismuth telluride (Bi2 Te3 ) nanowire arrays. The growth mechanisms and fabrication procedures of the Si and Bi2 Te3 devices are different as described in this paper. To characterize the thermoelectric device components, current-voltage (I-V) characteristics were first used to estimate their performance. For the Si device, the I-V characteristics suggest ohmic contacts at the metal-semiconductor junction. For the Bi2 Te3 device, the I-V characteristics curve showed a rectifying contact. Either low doping of the Bi2Te3 or surface contamination, i.e. native oxide, may cause the rectifying contact. The reversible Peltier effects occurring within the Si device were analyzed using a micro-thermocouple. Results indicated possible limitations of using Si nanowire arrays for the thermoelectric device.Copyright © 2003 by ASME

10 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations