scispace - formally typeset
Search or ask a question
Author

Peidong Yang

Bio: Peidong Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanowire & Perovskite (structure). The author has an hindex of 183, co-authored 562 publications receiving 144351 citations. Previous affiliations of Peidong Yang include Max Planck Society & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the phase transition dynamics of metal halide perovskites with anisotropic crystal structures were investigated using in situ optical micro-spectroscopy, showing a large blueshift in the photoluminescence (PL) peak at the low-T/high-T two-phase interface of partially transitioned CsSnI3 and FAPbI3 wires.
Abstract: Triiodide perovskites $${\rm CsPbI}_{3}$$ , $${\rm CsSnI}_{3}$$ , and $${\rm FAPbI}_{3}$$ (where FA is formamidinium) are highly promising materials for a range of optoelectronic applications in energy conversion. However, they are thermodynamically unstable at room temperature, preferring to form low-temperature (low-T) non-perovskite phases with one-dimensional anisotropic crystal structures. While such thermodynamic behavior represents a major obstacle toward realizing high-performance devices based on their high-temperature (high-T) perovskite phases, the underlying phase transition dynamics are still not well understood. Here we use in situ optical micro-spectroscopy to quantitatively study the transition from the low-T to high-T phases in individual $${\rm CsSnI}_{3}$$ and $${\rm FAPbI}_{3}$$ nanowires. We reveal a large blueshift in the photoluminescence (PL) peak (~38 meV) at the low-T/high-T two-phase interface of partially transitioned $${\rm FAPbI}_{3}$$ wire, which may result from the lattice distortion at the phase boundary. Compared to the experimentally derived activation energy of CsSnI3 (~1.93 eV), the activation energy of $${\rm FAPbI}_{3}$$ is relatively small (~0.84 eV), indicating a lower kinetic energy barrier when transitioning from a face-sharing octahedral configuration to a corner-sharing one. Further, the phase propagation rate in CsSnI3 is observed to be relatively high, which may be attributed to a high concentration of Sn vacancies. Our results could not only facilitate a deeper understanding of phase transition dynamics in halide perovskites with anisotropic crystal structures, but also enable controllable manipulation of optoelectronic properties via local phase engineering. Metal halide perovskites are a new class of semiconductors with great promise for a variety of optoelectronic applications. Owing to their soft ionic lattice, halide perovskites often exhibit rich phase transitions between different crystal structures, frequently from the “active” perovskite phases to undesirable “inactive” non-perovskite phases. Understanding and controlling this transition is vital for developing stable, high-performance devices. However, there is limited understanding on how different symmetry, crystal structure, and defect would impact such a phase transition process. In this report, in situ optical micro-spectroscopy is used to systematically investigate the phase transitions from non-perovskite to perovskite phases in individual CsSnI3 and FAPbI3 wires. Compared to the transition from an edge-sharing octahedral non-perovskite structure to a corner-sharing perovskite structure in CsSnI3, the activation energy for the FAPbI3 phase transition is relatively small, indicating a lower energy barrier when starting from a face-sharing octahedral structure in FAPbI3. The high concentration of Sn vacancies is probably responsible for the much higher phase propagation rate in CsSnI3 when compared to a CsPbBrxI3-x system with the same crystal structure but different halide vacancies. Our experimental results expand the knowledge of phase transition in halide perovskites and offer important guidance toward rationally designing more stable and efficient perovskite devices.

7 citations

Patent
29 Dec 2006
TL;DR: In this paper, a tunable nanowire probe for subwavelength imaging is also described utilizing efficient second harmonic generation (SHG) whose optical frequency conversion allows implementing sub-wavelength microscopes.
Abstract: Individually trapping, transferring, and assembling high-aspect-ratio semiconductor nanowires into arbitrary structures in a fluid environment. Nanowires with diameters as small as 20 nm and aspect ratios of above 100 can be trapped and transported in three dimensions, enabling the construction of nanowire architectures which may function as active photonic devices. Moreover, nanowire structures can now be assembled in physiological environments. In one aspect, nanowires are positioned to direct light to remote samples, reducing exposure of the overall sample to intense source illumination. A tunable nanowire probe for subwavelength imaging is also described utilizing efficient second harmonic generation (SHG) whose optical frequency conversion allows implementing subwavelength microscopes.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the utility of an annealing procedure in ammonia ambient for improving the optical characteristics of InxGa1-xN nanowires (0.07 ≤ x ≤ 0.42), as measured by energy-dispersive X-ray spectroscopy and Z-contrast scanning transmission electron microscopy.
Abstract: The utility of an annealing procedure in ammonia ambient is investigated for improving the optical characteristics of InxGa1–xN nanowires (0.07 ≤ x ≤ 0.42) grown on c-Al2O3 using a halide chemical vapor deposition method. Morphological studies using scanning electron microscopy confirm that the nanowire morphology is retained after annealing in ammonia at temperatures up to 800 °C. However, significant indium etching and composition inhomogeneities are observed for higher indium composition nanowires (x = 0.28, 0.42), as measured by energy-dispersive X-ray spectroscopy and Z-contrast scanning transmission electron microscopy. Structural analyses, using X-ray diffraction and high-resolution transmission electron microscopy, indicate that this is a result of the greater thermal instability of higher indium composition nanowires. The effect of these structural changes on the optical quality of InGaN nanowires is examined using steady-state and time-resolved photoluminescence measurements. Annealing in ammoni...

6 citations

Journal ArticleDOI
TL;DR: In this paper, a new halide perovskite Cs8Au3.5Cl23 was discovered on the basis of a BaTiO3-lattice ION {[InCl6], [AuCl5][Au/InCl4]
Abstract: The metal halide ionic octahedron, [MX6] (M = metal cation, X = halide anion), is considered to be the fundamental building block and functional unit of metal halide perovskites. By representing the metal halide ionic octahedron in halide perovskites as a super ion/atom, the halide perovskite can be described as an extended ionic octahedron network (ION) charge balanced by selected cations. This new perspective of halide perovskites based on ION enables the prediction of different packing and connectivity of the metal halide octahedra based on different solid-state lattices. In this work, a new halide perovskite Cs8Au3.5In1.5Cl23 was discovered on the basis of a BaTiO3-lattice ION {[InCl6][AuCl5][Au/InCl4]3}8-, which is assembled from three different ionic octahedra [InCl6], [AuCl6], and [Au/InCl6] and balanced by positively charged Cs cations. The success of this ION design concept in the discovery of Cs8Au3.5In1.5Cl23 opens up a new venue for the rational design of new halide perovskite materials.

6 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations