scispace - formally typeset
Search or ask a question
Author

Peifen Zhang

Bio: Peifen Zhang is an academic researcher from Zhejiang University. The author has contributed to research in topics: Microbiome & Gut–brain axis. The author has an hindex of 3, co-authored 11 publications receiving 65 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Using whole-genome shotgun metagenomic and untargeted metabolomic methods, a combinatorial marker panel is identified that robustly discriminated MDD from HC individuals in both the discovery and validation sets, providing a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.
Abstract: Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD patients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium. These multilevel omics alterations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were consistently mapped to amino acid (γ-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the discovery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.

142 citations

Journal ArticleDOI
TL;DR: In this article, using 16S ribosomal RNA (rRNA) gene sequencing, the microbial compositions of 165 subjects with MDD are compared with 217 BD, and 217 healthy controls (HCs).
Abstract: Discriminating depressive episodes of bipolar disorder (BD) from major depressive disorder (MDD) is a major clinical challenge. Recently, gut microbiome alterations are implicated in these two mood disorders; however, little is known about the shared and distinct microbial characteristics in MDD versus BD. Here, using 16S ribosomal RNA (rRNA) gene sequencing, the microbial compositions of 165 subjects with MDD are compared with 217 BD, and 217 healthy controls (HCs). It is found that the microbial compositions are different between the three groups. Compared to HCs, MDD is characterized by altered covarying operational taxonomic units (OTUs) assigned to the Bacteroidaceae family, and BD shows disturbed covarying OTUs belonging to Lachnospiraceae, Prevotellaceae, and Ruminococcaceae families. Furthermore, a signature of 26 OTUs is identified that can distinguish patients with MDD from those with BD or HCs, with area under the curve (AUC) values ranging from 0.961 to 0.986 in discovery sets, and 0.702 to 0.741 in validation sets. Moreover, 4 of 26 microbial markers correlate with disease severity in MDD or BD. Together, distinct gut microbial compositions are identified in MDD compared to BD and HCs, and a novel marker panel is provided for distinguishing MDD from BD based on gut microbiome signatures.

78 citations

Journal ArticleDOI
TL;DR: In this article, a 24-week follow-up study to identify gut microbial biomarkers for schizophrenia diagnosis and treatment response, using a sample of 107 first-episode, drug-naive SCH patients, and 107 healthy controls (HCs).
Abstract: Preclinical studies have shown that the gut microbiota can play a role in schizophrenia (SCH) pathogenesis via the gut-brain axis. However, its role in the antipsychotic treatment response is unclear. Here, we present a 24-week follow-up study to identify gut microbial biomarkers for SCH diagnosis and treatment response, using a sample of 107 first-episode, drug-naive SCH patients, and 107 healthy controls (HCs). We collected biological samples at baseline (all participants) and follow-up time points after risperidone treatment (SCH patients). Treatment response was assessed using the Positive and Negative Symptoms Scale total (PANSS-T) score. False discovery rate was used to correct for multiple testing. We found that SCH patients showed lower α-diversity (the Shannon and Simpson’s indices) compared to HCs at baseline (p = 1.21 × 10−9, 1.23 × 10−8, respectively). We also found a significant difference in β-diversity between SCH patients and HCs (p = 0.001). At baseline, using microbes that showed different abundance between patients and controls as predictors, a prediction model can distinguish patients from HCs with an area under the curve (AUC) of 0.867. In SCH patients, after 24 weeks of risperidone treatment, we observed an increase of α-diversity toward the basal level of HCs. At the genus level, we observed decreased abundance of Lachnoclostridium (p = 0.019) and increased abundance Romboutsia (p = 0.067). Moreover, the treatment response in SCH patients was significantly associated with the basal levels of Lachnoclostridium and Romboutsia (p = 0.005 and 0.006, respectively). Our results suggest that SCH patients may present characteristic microbiota, and certain microbiota biomarkers may predict treatment response in this patient population.

20 citations

Journal ArticleDOI
TL;DR: The concept of MGB axis is introduced, previous findings in human studies associated with bipolar disorder are focused on, and a research framework linking gut microbiome to determinants and health‐related outcomes in BD is proposed.
Abstract: Trillions of microorganisms inhabiting in the human gut play an essential role in maintaining physical and mental health. The connections between gut microbiome and neuropsychiatric diseases have been recently identified. The pathogenesis of bipolar disorder, a spectrum of diseases manifesting with mood and energy fluctuations, also seems to be involved in the bidirectional modulation of the microbiome-gut-brain (MGB) axis. In this review, we briefly introduce the concept of MGB axis, and then focus on the previous findings in human studies associated with bipolar disorder. These studies provided preliminary evidences on the gut microbial alterations in bipolar disorder. Limitations in these studies and future directions in this research field, such as fecal microbiome transplantation and microbiome-targeted therapy, were discussed. A research framework linking gut microbiome to determinants and health-related outcomes in BD was also proposed. Better characterizing and understanding of gut microbial biosignatures in bipolar patients contribute to clarify the etiology of this intractable disease and pave the new way for treatment innovation.

14 citations

Journal ArticleDOI
TL;DR: Findings indicated that elevated NAcc/vmPFC-right AIC connectivity within the reward circuit could be a neuroimaging endophenotype of BD.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors conducted an umbrella and updated meta-analysis of gut microbiota alterations in general adult psychiatric populations and performed a within-and between-diagnostic comparison, concluding that gut microbiota perturbations were associated with a transdiagnostic pattern with a depletion of certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacteria in patients with depression, bipolar disorder, schizophrenia, and anxiety.
Abstract: Importance Evidence of gut microbiota perturbations has accumulated for multiple psychiatric disorders, with microbiota signatures proposed as potential biomarkers. However, no attempts have been made to evaluate the specificity of these across the range of psychiatric conditions. Objective To conduct an umbrella and updated meta-analysis of gut microbiota alterations in general adult psychiatric populations and perform a within- and between-diagnostic comparison. Data sources Cochrane Library, PubMed, PsycINFO, and Embase were searched up to February 2, 2021, for systematic reviews, meta-analyses, and original evidence. Study selection A total of 59 case-control studies evaluating diversity or abundance of gut microbes in adult populations with major depressive disorder, bipolar disorder, psychosis and schizophrenia, anorexia nervosa, anxiety, obsessive compulsive disorder, posttraumatic stress disorder, or attention-deficit/hyperactivity disorder were included. Data extraction and synthesis Between-group comparisons of relative abundance of gut microbes and beta diversity indices were extracted and summarized qualitatively. Random-effects meta-analyses on standardized mean difference (SMD) were performed for alpha diversity indices. Main outcomes and measures Alpha and beta diversity and relative abundance of gut microbes. Results A total of 34 studies provided data and were included in alpha diversity meta-analyses (n = 1519 patients, n = 1429 control participants). Significant decrease in microbial richness in patients compared with control participants were found (observed species SMD = -0.26; 95% CI, -0.47 to -0.06; Chao1 SMD = -0.5; 95% CI, -0.79 to -0.21); however, this was consistently decreased only in bipolar disorder when individual diagnoses were examined. There was a small decrease in phylogenetic diversity (SMD = -0.24; 95% CI, -0.47 to -0.001) and no significant differences in Shannon and Simpson indices. Differences in beta diversity were consistently observed only for major depressive disorder and psychosis and schizophrenia. Regarding relative abundance, little evidence of disorder specificity was found. Instead, a transdiagnostic pattern of microbiota signatures was found. Depleted levels of Faecalibacterium and Coprococcus and enriched levels of Eggerthella were consistently shared between major depressive disorder, bipolar disorder, psychosis and schizophrenia, and anxiety, suggesting these disorders are characterized by a reduction of anti-inflammatory butyrate-producing bacteria, while pro-inflammatory genera are enriched. The confounding associations of region and medication were also evaluated. Conclusions and relevance This systematic review and meta-analysis found that gut microbiota perturbations were associated with a transdiagnostic pattern with a depletion of certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacteria in patients with depression, bipolar disorder, schizophrenia, and anxiety.

174 citations

Journal ArticleDOI
TL;DR: Using whole-genome shotgun metagenomic and untargeted metabolomic methods, a combinatorial marker panel is identified that robustly discriminated MDD from HC individuals in both the discovery and validation sets, providing a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.
Abstract: Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD patients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium. These multilevel omics alterations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were consistently mapped to amino acid (γ-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the discovery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.

142 citations

Journal ArticleDOI
TL;DR: In this paper , the authors characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes and dietary and health records (prevalent and follow-up).
Abstract: Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP–taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host–microbiota interactions and their association with disease. Genome-wide association analysis of gut microbial taxa in a single homogenous population-based cohort of 5,959 Finnish individuals identifies 567 independent SNP–taxon associations, including strong associations with LCT, ABO and MED13L.

105 citations

Journal ArticleDOI
TL;DR: In this paper , the authors synthesized the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), compared to healthy controls.
Abstract: Abstract The emerging understanding of gut microbiota as ‘metabolic machinery’ influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to ‘healthy’ controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.

104 citations

Journal ArticleDOI
TL;DR: These findings provide new microbial and metabolic frameworks for understanding the MGB axisʼ role in depression, and suggest that the gut microbiome may participate in the onset of depressive-like behaviors by modulating peripheral and central glycerophospholipid metabolism.
Abstract: Emerging research demonstrates that microbiota-gut-brain (MGB) axis changes are associated with depression onset, but the mechanisms underlying this observation remain largely unknown. The gut microbiome of nonhuman primates is highly similar to that of humans, and some subordinate monkeys naturally display depressive-like behaviors, making them an ideal model for studying these phenomena. Here, we characterized microbial composition and function, and gut-brain metabolic signatures, in female cynomolgus macaque (Macaca fascicularis) displaying naturally occurring depressive-like behaviors. We found that both microbial and metabolic signatures of depressive-like macaques were significantly different from those of controls. The depressive-like monkeys had characteristic disturbances of the phylum Firmicutes. In addition, the depressive-like macaques were characterized by changes in three microbial and four metabolic weighted gene correlation network analysis (WGCNA) clusters of the MGB axis, which were consistently enriched in fatty acyl, sphingolipid, and glycerophospholipid metabolism. These microbial and metabolic modules were significantly correlated with various depressive-like behaviors, thus reinforcing MGB axis perturbations as potential mediators of depression onset. These differential brain metabolites were mainly mapped into the hippocampal glycerophospholipid metabolism in a region-specific manner. Together, these findings provide new microbial and metabolic frameworks for understanding the MGB axis' role in depression, and suggesting that the gut microbiome may participate in the onset of depressive-like behaviors by modulating peripheral and central glycerophospholipid metabolism.

76 citations