scispace - formally typeset
Search or ask a question
Author

Pekka E. Kauppi

Bio: Pekka E. Kauppi is an academic researcher from University of Helsinki. The author has contributed to research in topics: Forest ecology & Carbon sink. The author has an hindex of 35, co-authored 86 publications receiving 13343 citations. Previous affiliations of Pekka E. Kauppi include International Institute of Minnesota & Finnish Forest Research Institute.


Papers
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
TL;DR: The results reveal a picture of biomass carbon gains in Eurasian boreal and North American temperate forests and losses in some Canadian boreal forests and contributes to a monitoring program of forest biomass sinks under the Kyoto protocol.
Abstract: The terrestrial carbon sink, as of yet unidentified, represents 15–30% of annual global emissions of carbon from fossil fuels and industrial activities. Some of the missing carbon is sequestered in vegetation biomass and, under the Kyoto Protocol of the United Nations Framework Convention on Climate Change, industrialized nations can use certain forest biomass sinks to meet their greenhouse gas emissions reduction commitments. Therefore, we analyzed 19 years of data from remote-sensing spacecraft and forest inventories to identify the size and location of such sinks. The results, which cover the years 1981–1999, reveal a picture of biomass carbon gains in Eurasian boreal and North American temperate forests and losses in some Canadian boreal forests. For the 1.42 billion hectares of Northern forests, roughly above the 30th parallel, we estimate the biomass sink to be 0.68 ± 0.34 billion tons carbon per year, of which nearly 70% is in Eurasia, in proportion to its forest area and in disproportion to its biomass carbon pool. The relatively high spatial resolution of these estimates permits direct validation with ground data and contributes to a monitoring program of forest biomass sinks under the Kyoto protocol.

655 citations

Journal ArticleDOI
03 Apr 1992-Science
TL;DR: Measurements from Austria, Finland, France, Germany, Sweden, and Switzerland show a general increase of forest resources, indicating that biomass accumulation in nontropical forests can account for a large proportion of the estimated mismatch between sinks and sources of atmospheric carbon dioxide.
Abstract: In severely polluted areas, such as locally in Montshegorsk in northwestern Russia, all trees have died. However, measurements from Austria, Finland, France, Germany, Sweden, and Switzerland show a general increase of forest resources. The fertilization effects of pollutants override the adverse effects at least for the time being. Biomass was built up in the 1970s and 1980s in European forests. If there has been similar development in other continents, biomass accumulation in nontropical forests can account for a large proportion of the estimated mismatch between sinks and sources of atmospheric carbon dioxide.

622 citations

Journal ArticleDOI
TL;DR: The Forest Identity relates the carbon sequestered in forests to the changing variables of national or regional forest area, growing stock density per area, biomass per growing stock volume, and carbon concentration in the biomass to quantify the sources of change of a nation's forests.
Abstract: Amid widespread reports of deforestation, some nations have nevertheless experienced transitions from deforestation to reforestation. In a causal relationship, the Forest Identity relates the carbon sequestered in forests to the changing variables of national or regional forest area, growing stock density per area, biomass per growing stock volume, and carbon concentration in the biomass. It quantifies the sources of change of a nation's forests. The Identity also logically relates the quantitative impact on forest expanse of shifting timber harvest to regions and plantations where density grows faster. Among 50 nations with extensive forests reported in the Food and Agriculture Organization's comprehensive Global Forest Resources Assessment 2005, no nation where annual per capita gross domestic product exceeded $4,600 had a negative rate of growing stock change. Using the Forest Identity and national data from the Assessment report, a single synoptic chart arrays the 50 nations with coordinates of the rates of change of basic variables, reveals both clusters of nations and outliers, and suggests trends in returning forests and their attributes. The Forest Identity also could serve as a tool for setting forest goals and illuminating how national policies accelerate or retard the forest transitions that are diffusing among nations.

391 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations