scispace - formally typeset
Search or ask a question
Author

Pengcheng Zhou

Bio: Pengcheng Zhou is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Materials science & Perovskite (structure). The author has an hindex of 9, co-authored 9 publications receiving 647 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A facile one-step, low-temperature, nonhydrolytic approach to in situ synthesizing amino-functionalized TiO2 nanoparticles (abbreviated as NH2 -TiO2 NPs) is developed by chemical bonding of amino (-NH2 ) groups, via TiN bonds, onto the surface of TiO1 NPs.
Abstract: Titanium oxide (TiO2 ) has been commonly used as an electron transport layer (ETL) of regular-structure perovskite solar cells (PSCs), and so far the reported PSC devices with power conversion efficiencies (PCEs) over 21% are mostly based on mesoporous structures containing an indispensable mesoporous TiO2 layer. However, a high temperature annealing (over 450 °C) treatment is mandatory, which is incompatible with low-cost fabrication and flexible devices. Herein, a facile one-step, low-temperature, nonhydrolytic approach to in situ synthesizing amino-functionalized TiO2 nanoparticles (abbreviated as NH2 -TiO2 NPs) is developed by chemical bonding of amino (-NH2 ) groups, via TiN bonds, onto the surface of TiO2 NPs. NH2 -TiO2 NPs are then incorporated as an efficient ETL in n-i-p planar heterojunction (PHJ) PSCs, affording PCE over 21%. Cs0.05 FA0.83 MA0.12 PbI2.55 Br0.45 (abbreviated as CsFAMA) PHJ PSC devices based on NH2 -TiO2 ETL exhibit the best PCE of 21.33%, which is significantly higher than that of the devices based on the pristine TiO2 ETL (19.82%) and is close to the record PCE for devices with similar structures and fabrication procedures. Besides, due to the passivation of the surface trap states of perovskite film, the hysteresis of current-voltage response is significantly suppressed, and the ambient stability of devices is improved upon amino functionalization.

197 citations

Journal ArticleDOI
TL;DR: The role of CZTS in efficient hole transporting from the perovskite layer to the top Au electrode as confirmed by the prohibited charge recombination at the perOVskite/Au electrode interface is demonstrated.
Abstract: Kesterite-structured quaternary semiconductor Cu2ZnSnS4 (CZTS) has been commonly used as light absorber in thin film solar cells on the basis of its optimal bandgap of 1.5 eV, high absorption coefficient, and earth-abundant elemental constituents. Herein we applied CZTS nanoparticles as a novel inorganic hole transporting material (HTM) for organo-lead halide perovskite solar cells (PSCs) for the first time, achieving a power conversion efficiency (PCE) of 12.75%, which is the highest PCE for PSCs with Cu-based inorganic HTMs reported up to now, and quite comparable to that obtained for PSCs based on commonly used organic HTM such as 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-MeOTAD). The size of CZTS nanoparticles and its incorporation condition as HTM were optimized, and the effects of CZTS HTM on the optical absorption, crystallinity, morphology of the perovskite film and the interface between the perovskite layer and the Au electrode were investigated and compared with...

139 citations

Journal ArticleDOI
TL;DR: An amphiphilic surfactant, oleamide, was applied to dope the PCBM electron transport layer (ETL) of inverted structure perovskite solar cells (ISPSCs), resulting in a dramatic efficiency enhancement.
Abstract: An amphiphilic surfactant, oleamide, was applied to dope the PCBM electron transport layer (ETL) of inverted structure perovskite solar cells (ISPSCs), resulting in a dramatic efficiency enhancement. Under the optimized oleamide doping ratio of 5.0 wt %, the power conversion efficiency of the CH3NH3PbIxCl(3-x) perovskite-based ISPSC device is enhanced from 10.05% to 12.69%, and this is primarily due to the increases of both fill factor and short-circuit current. According to the surface morphology study of the perovskite/PCBM bilayer film, oleamide doping improves the coverage of PCBM ETL onto the perovskite layer, and this is beneficial for the interfacial contact between the perovskite layer and the Ag cathode and consequently the electron transport from perovskite to the Ag cathode. Such an improved electron transport induced by oleamide doping is further evidenced by the impedance spectroscopic study, revealing the prohibited electron-hole recombination at the interface between the perovskite layer and the Ag cathode.

124 citations

Journal ArticleDOI
TL;DR: Both IL interface engineering methods reveal the effective electron transport of [EMIM]PF6-IL in efficient electron transport in regular-structure (n-i-p) planar heterojunction perovskite solar cells (PHJ-PSCs).
Abstract: Inorganic metal oxide, especially TiO2, has been commonly used as an electron transport layer (ETL) in regular-structure (n-i-p) planar heterojunction perovskite solar cells (PHJ-PSCs) but generally suffers from high electron recombination rate and incompatibility with low-temperature solution processability. Herein, by applying an ionic liquid (IL, 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM]PF6)) as either a TiO2-modifying interlayer or an independent ETL, we investigated systematically IL interface engineering for PHJ-PSCs. Upon spin-coating [EMIM]PF6-IL onto TiO2 ETL as a modification layer, the average power conversion efficiency (PCE) of CH3NH3PbI3 PHJ-PSC devices reaches 18.42 ± 0.65%, which dramatically surpasses that based on commonly used TiO2 ETL (14.20 ± 0.43%), and the highest PCE (19.59%) is almost identical to that of the record PCE for planar CH3NH3PbI3 PSCs (19.62%) reported very recently. On the other hand, by applying [EMIM]PF6-IL as an independent ETL, we achieved an average...

102 citations

Journal ArticleDOI
TL;DR: In this article, a new method, called successive surface engineering, was developed for perovskite solar cells (PSCs), which affords PSCs with enhanced efficiency and dramatically suppressed current-voltage hysteresis.
Abstract: Interfacial engineering is critical for highly efficient charge carrier transport in perovskite solar cells (PSCs). Herein, we developed a new method, called successive surface engineering, that affords PSCs with enhanced efficiency and dramatically suppressed current–voltage hysteresis. Upon modifying the TiO2 compact layer, which is commonly used as an electron transport layer (ETL) in regular-structure (n–i–p) planar heterojunction (PHJ) PSCs, by successively incorporating [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an ethanolamine (ETA)-functionalized fullerene (C60-ETA) synthesized facilely via a one-pot nucleophilic addition reaction, the average power conversion efficiency (PCE) of the CH3NH3PbI3-based PHJ-PSC devices increased from 13.00% to 16.31%; the best PCE attained was 18.49%, which, to our knowledge, represents the highest PCE reported to date for regular-structure PHJ-PSCs devices based on fullerene-modified TiO2 interlayers. In contrast, single surface engineering of the TiO2 layer with a PC61BM or C60-ETA layer alone results in only negligible changes in PCE, revealing the synergistic effect of these two fullerene derivatives: the PC61BM layer can passivate the traps on the TiO2 surface, while the subsequent C60-ETA layer not only improves the wettability of the perovskite film on the ETL but also facilitates electron transport across the interface between the perovskite and the TiO2 ETL. The structural and morphological characterizations show that following dual surface modification of the TiO2 layer with PC61BM and C60-ETA, both the surface coverage and crystallinity of the CH3NH3PbI3 perovskite film are improved. Steady-state photoluminescence decay and electrochemical impedance spectroscopic studies manifest that the dual surface modification substantially improves the charge extraction efficiency and suppresses charge recombination. As a consequence, this dual surface modification leads to an obvious increase of the short-circuit current density (Jsc), which contributes primarily to the PCE enhancement. Additionally, because PC61BM may induce passivation of the traps on the TiO2 surface and in the perovskite layer, remarkably, the hysteresis of the current–voltage response is dramatically suppressed following the dual surface modification.

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An additive-engineering strategy is developed to realize a facile and convenient fabrication method of large-area uniform perovskite films composed of large crystal size and low density of defects, which is found to simultaneously enhance the PCE and the durability of PSCs.
Abstract: Solution-processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long-term stability and large-area device demonstration. Here, an additive-engineering strategy is developed to realize a facile and convenient fabrication method of large-area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI3), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm2, and the high-performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI3-based PSCs so far.

520 citations

Journal ArticleDOI
TL;DR: The fundamental background knowledge of nucleation and crystal growth processes in solution including the LaMer model and Ostwald ripening process is described and the contemporary progress in chemical precursor composition is provided to comprehend the current research approaches to further enhance photovoltaic performance and device stability.
Abstract: Over the last several years, inorganic–organic hybrid perovskites have shown dramatic achievements in photovoltaic performance and device stability. Despite the significant progress in photovoltaic application, an in-depth understanding of the fundamentals of precursor solution chemistry is still lacking. In this review, the fundamental background knowledge of nucleation and crystal growth processes in solution including the LaMer model and Ostwald ripening process is described. This review article also highlights the recent progress in precursor-coordinating molecule interaction in solution along with the role of anti-solvent in the solvent engineering process to control nucleation and crystal growth. Moreover, chemical pathways from precursor solution to perovskite film formation are given. This represents identification of the intermediate phase induced by precursor-coordinating molecule interaction and responsible intermediate species for uniform and dense perovskite film formation. Further to the description of chemical phenomena in solution, the contemporary progress in chemical precursor composition is also provided to comprehend the current research approaches to further enhance photovoltaic performance and device stability. On the basis of the critical and comprehensive review, we provide some perspectives to further achieve high-performance perovskite solar cells with long-term device stability through precisely controlled nucleation and crystal growth in precursor solution.

439 citations

Journal ArticleDOI
Tanghao Liu1, Ke Chen1, Qin Hu1, Rui Zhu2, Rui Zhu1, Qihuang Gong1, Qihuang Gong2 
TL;DR: In this paper, the authors present the roadmap for the development of inverted perovskite solar cells with the inverted structure (p-i-n structure) and discuss several research hotspots.
Abstract: During the past 6 years, perovskite solar cells have experienced a rapid development and shown great potential as the next-generation photovoltaics. For the perovskite solar cells with regular structure (n-i-p structure), device efficiency has reached over 20% after the intense efforts of researchers from all over the world. Recently, perovskite solar cells with the inverted structure (p-i-n structure) have been becoming more and more attractive, owing to their easy-fabrication, cost-effectiveness, and suppressed hysteresis characteristics. Some recent progress in their device performance and stability has indicated their promising future. Here, recent developments and future perspectives about inverted perovskite solar cells are reviewed. Interface engineering, film morphology control, device stability, hysteresis phenomena and other research hotspots are discussed to present the roadmap for the development of inverted perovskite solar cells.

355 citations