scispace - formally typeset
Search or ask a question
Author

Per-Erik Petersson

Bio: Per-Erik Petersson is an academic researcher. The author has contributed to research in topics: Beam (structure) & Fracture mechanics. The author has an hindex of 3, co-authored 3 publications receiving 10061 citations.

Papers
More filters
01 Jan 2008
TL;DR: In this article, fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened, which may be regarded as a way of expressing the energy adsorption in the energy balance approach.
Abstract: A method is presented in which fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened. This assumption may be regarded as a way of expressing the energy adsorption GC in the energy balance approach, but it is also in agreement with results of tension tests. As a demonstration the method has been applied to the bending of an unreinforced beam, which has led to an explanation of the difference between bending strength and tensile strength, and of the variation in bending strength with beam depth.

5,564 citations

Journal ArticleDOI
TL;DR: In this article, fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened, which may be regarded as a way of expressing the energy adsorption in the energy balance approach.

5,505 citations

Journal ArticleDOI
TL;DR: In this article, a three-point bend test on a notched beam gives a stable load-deflection curve and the area under the curve represents the amount of energy consumed when the crack propagates through the beam.

138 citations


Cited by
More filters
Journal ArticleDOI
01 May 1983
TL;DR: In this article, a fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed.
Abstract: A fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed. Only Mode I is considered. The fracture is modeled as a blunt smeard crack band, which is justified by the random nature of the microstructure. Simple triaxial stress-strain relations which model the strain-softening and describe the effect of gradual microcracking in the crack band are derived. It is shown that it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a single diagonal term of the complicance matrix. The limiting case of this matrix for complete (continuous) cracking is shown to be identical to the inverse of the well-known stiffness matrix for a perfectly cracked material. The material fracture properties are characterized by only three parameters—fracture energy, uniaxial strength limit and width of the crack band (fracture process zone), while the strain-softening modulus is a function of these parameters. A method of determining the fracture energy from measured complete stres-strain relations is also given. Triaxial stress effects on fracture can be taken into account. The theory is verified by comparisons with numerous experimental data from the literature. Satisfactory fits of maximum load data as well as resistance curves are achieved and values of the three material parameters involved, namely the fracture energy, the strength, and the width of crack band front, are determined from test data. The optimum value of the latter width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable for a homogeneous continuum modeling. The method of implementing the theory in a finite element code is also indicated, and rules for achieving objectivity of results with regard to the analyst's choice of element size are given. Finally, a simple formula is derived to predict from the tensile strength and aggregate size the fracture energy, as well as the strain-softening modulus. A statistical analysis of the errors reveals a drastic improvement compared to the linear fracture theory as well as the strength theory. The applicability of fracture mechanics to concrete is thus solidly established.

3,102 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive model based on an internal variable-formulation of plasticity theory for the non-linear analysis of concrete is presented, which uses a new yield criterion which matches experimental data quite well and it accounts for both elastic and plastic stiffness degradations effects.

3,080 citations

BookDOI
17 Aug 2012
TL;DR: De Borst et al. as mentioned in this paper present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,568 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a nonlocal damage theory, which is based on the nonlocal treatment of damage from the local treatment of elastic behavior, and the only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of a material.
Abstract: In the usual local finite element analysis, strain softening causes spurious mesh sensitivity and incorrect convergence when the element is refined to vanishing size. In a previous continuum formulation, these incorrect features were overcome by the imbricate nonlocal continuum, which, however, introduced some unnecessary computational complications due to the fact that all response was treated as nonlocal. The key idea of the present nonlocal damage theory is to subject to nonlocal treatment only those variables that control strain softening, and to treat the elastic part of the strain as local. The continuum damage mechanics formulation, convenient for separating the nonlocal treatment of damage from the local treatment of elastic behavior, is adopted in the present work. The only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of the material. Avoidance of spurious mesh ...

1,672 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the structural size effect of fracture in concrete and rock structures, using dimensional analysis and illustrative examples, and showed that the energy release caused by fracture depends on both the length and the area of the crack band.
Abstract: The fracture front in concrete, as well as rock, is blunted by a zone of microcracking, and in ductile metals by a zone of yielding. This blunting causes deviations from the structural size effect known from linear elastic fracture mechanics (LEFM). The size effect is studied first for concrete or rock structures, using dimensional analysis and illustrative examples. Fracture is considered to be caused by propagation of a crack band that has a fixed width at its front relative to the aggregate size. The analysis rests on the hypothesis that the energy release caused by fracture depends on both the length and the area of the crack band. The size effect is shown to consist in a smooth transition from the strength criterion for small sizes to LEFM for large sizes, and the nominal stress σN at failure is found to decline as (1+λ/λ0)-1/2 in which λ0=constant and λ=relative structure size. This function is verified by Walsh's test data. If reinforcement is present at the fracture front and behaves elastically, ...

1,474 citations