scispace - formally typeset
Search or ask a question
Author

Per Helander

Bio: Per Helander is an academic researcher from Max Planck Society. The author has contributed to research in topics: Tokamak & Stellarator. The author has an hindex of 47, co-authored 290 publications receiving 8216 citations. Previous affiliations of Per Helander include University of Greifswald & Chalmers University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed in this paper.
Abstract: Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.

1,051 citations

Book
01 Jan 2002
TL;DR: In this paper, the moment approach to neoclassical theory is applied to the transport of a cylindrical plasmas, and experimental evidence for the transport in the Pfirsch-Schluter regime is provided.
Abstract: 1. Introduction 2. Kinetic and fluid descriptions of a plasma 3. The collision operator 4. Plasma fluid equations 5. Transport of a cylindrical plasma 6. Particle motion 7. Toroidal plasma 8. Transport in toroidal plasmas 9. Transport in the Pfirsch-Schluter regime 10. Transport in the plateau regime 11. Transport in the banana regime 12. The moment approach to neoclassical theory 13. Advanced topics 14. Experimental evidence for neoclassical transport.

579 citations

Journal ArticleDOI
Per Helander1
TL;DR: The mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
Abstract: The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

279 citations

Journal ArticleDOI
TL;DR: It is shown that electron-positron pair production is expected to occur in post-disruption plasmas in large tokamaks, including JET and JT-60U, where up to about 10(14) positrons may be created in collisions between multi-MeV runaway electrons and thermal particles.
Abstract: Electrons are often accelerated to energies of tens of MeV by the electric field induced during the disruptive instability in tokamaks [1]. The resulting beam of ‘‘runaway’’ electrons can carry up to about half the original plasma current. At these high energies, electron-positron pairs can be created in collisions between the runaway electrons and background plasma ions and electrons. In this Letter, we estimate the number of such pairs and discuss the fate of the positrons created in this way. Perhaps surprisingly, it appears that tokamaks may be the largest repositories of positrons made by man. Electron runaway is possible because the friction force experienced by a fast electron falls off with increasing energy. An applied electric field may therefore lead to free-fall acceleration of energetic electrons if the electric force exceeds the limiting friction force on ultrarelativistic electrons [2],

178 citations

Journal ArticleDOI
TL;DR: In this paper, a simple cellular automaton that models avalanches in a one dimensional "sandpile" is presented, which generates a probability distribution of energy discharges due to internal reorganization that is a power law implying SOC.
Abstract: The power law dependence of the power spectrum of auroral indices, and in-situ magnetic field observations in the earth's geotail, may be evidence that the coupled solar wind-magnetospheric system exhibits scale free self organised criticality and can to some extent be described by avalanche models. In contrast, the intensity of, and time interval between, substorms both have well defined probability distributions with characteristic scales. We present results from a simple cellular automaton that models avalanches in a one dimensional “sandpile”; here we examine the simplest case of constant inflow. This model generates a probability distribution of energy discharges due to internal reorganization that is a power law implying SOC, whereas systemwide discharges (flow of “sand” out of the system) form a distinct group which do not exhibit SOC. The energy dissipated in a systemwide discharge follows a probability distribution with a well defined mean, as does the time interval between one systemwide discharge and the next. Internal and external avalanches can therefore in principle be identified with distinct processes in the dynamic geotail. If so, the avalanche model places restrictions on the class of physical process that may be invoked to explain the observed geomagnetic dynamics.

162 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced the concept of self-organized criticality to explain the behavior of the sandpile model, where particles are randomly dropped onto a square grid of boxes and when a box accumulates four particles they are redistributed to the four adjacent boxes or lost off the edge of the grid.
Abstract: The concept of self-organized criticality was introduced to explain the behaviour of the sandpile model. In this model, particles are randomly dropped onto a square grid of boxes. When a box accumulates four particles they are redistributed to the four adjacent boxes or lost off the edge of the grid. Redistributions can lead to further instabilities with the possibility of more particles being lost from the grid, contributing to the size of each ‘avalanche’. These model ‘avalanches’ satisfied a power-law frequency‐area distribution with a slope near unity. Other cellular-automata models, including the slider-block and forest-fire models, are also said to exhibit self-organized critical behaviour. It has been argued that earthquakes, landslides, forest fires, and species extinctions are examples of self-organized criticality in nature. In addition, wars and stock market crashes have been associated with this behaviour. The forest-fire model is particularly interesting in terms of its relation to the critical-point behaviour of the sitepercolation model. In the basic forest-fire model, trees are randomly planted on a grid of points. Periodically in time, sparks are randomly dropped on the grid. If a spark drops on a tree, that tree and adjacent trees burn in a model fire. The fires are the ‘avalanches’ and they are found to satisfy power-law frequency‐area distributions with slopes near unity. This forest-fire model is closely related to the site-percolation model, that exhibits critical behaviour. In the forest-fire model there is an inverse cascade of trees from small clusters to large clusters, trees are lost primarily from model fires that destroy the largest clusters. This quasi steady-state cascade gives a power-law frequency‐area distribution for both clusters of trees and smaller fires. The site-percolation model is equivalent to the forest-fire model without fires. In this case there is a transient cascade of trees from small to large clusters and a power-law distribution is found only at a critical density of trees.

1,384 citations