scispace - formally typeset
Search or ask a question
Author

Per Møller

Bio: Per Møller is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Implicit memory & Odor. The author has an hindex of 26, co-authored 69 publications receiving 2615 citations. Previous affiliations of Per Møller include University of Copenhagen Faculty of Life Sciences & Newcastle University.


Papers
More filters
Journal ArticleDOI
TL;DR: Results from studies investigating the link between the sensory perception of food and human appetite regulation are reviewed, finding that increasing the food variety can increase food and energy intake and in the short to medium term alter energy balance.
Abstract: Objective: How much do the sensory properties of food influence the way people select their food and how much they eat? The objective of this paper is to review results from studies investigating the link between the sensory perception of food and human appetite regulation. Content of the review: The influence of palatability on appetite and food intake in humans has been investigated in several studies. All reviewed studies have shown increased intake as palatability increased, whereas assessments of the effect of palatability using measures of subjective appetite sensations have shown diverging results, for example, subjects either feel more hungry and less full after a palatable meal compared to a less palatable meal, or they feel the opposite, or there is no difference. Whether palatability has an effect on appetite in the period following consumption of a test meal is unclear. Several studies have investigated which sensory properties of food are involved in sensory-specific satiety. Taste, smell, texture and appearance-specific satieties have been identified, whereas studies on the role of macronutrients and the energy content of the food in sensory-specific satiety have given equivocal results. Different studies have shown that macronutrients and energy content play a role in sensory-specific satiety or that macronutrients and energy content are not a factor in sensory-specific satiety. Sensory-specific satiety may have an important influence on the amount of food eaten. Studies have shown that increasing the food variety can increase food and energy intake and in the short to medium term alter energy balance. Further knowledge about the importance of flavour in appetite regulation is needed, for example, which flavour combinations improve satiety most, the possible connection between flavour intensity and satiety, the effect of persistence of chemesthetic sensation on palatability and satiety, and to what extent genetic variation in taste sensitivity and perception influences dietary habits and weight control.

564 citations

Journal ArticleDOI
01 Jun 2017-Appetite
TL;DR: Controlling strategies for changing children's eating behaviour in a positive direction appear to be counterproductive and hands-on approaches such as gardening and cooking programs may encourage greater vegetable consumption and may have a larger effect compared to nutrition education.

227 citations

Journal ArticleDOI
TL;DR: The basic premise is that the application of chemical and physical techniques in some restaurant kitchens to produce novel textures and flavor combinations has not only revolutionized the restaurant experience but also led to new enjoyment and appreciation of food.
Abstract: The science of domestic and restaurant cooking has recently moved from the playground of a few interested amateurs into the realm of serious scientific endeavor. A number of restaurants around the world have started to adopt a more scientific approach in their kitchens,1–3 and perhaps partly as a result, several of these have become acclaimed as being among the best in the world.4,5 Today, many food writers and chefs, as well as most gourmets, agree that chemistry lies at the heart of the very finest food available in some of the world’s finest restaurants. At least in the world of gourmet food, chemistry has managed to replace its often tarnished image with a growing respect as the application of basic chemistry in the kitchen has provided the starting point for a whole new cuisine. The application of chemistry and other sciences to restaurant and domestic cooking is thus making a positive impact in a very public arena which inevitably gives credence to the subject as a whole. As yet, however, this activity has been largely in the form of small collaborations between scientists and chefs. To date, little “new science” has emerged, but many novel applications of existing science have been made, assisting chefs to produce new dishes and extend the range of techniques available in their kitchens. Little of this work has appeared in the scientific literature,2,3,6–9 but the work has received an enormous amount of media attention. A quick Google search will reveal thousands of news articles over the past few years; a very few recent examples can be found in China,(10) the United States,11,12 and Australia.(13) In this review we bring together the many strands of chemistry that have been and are increasingly being used in the kitchen to provide a sound basis for further developments in the area. We also attempt throughout to show using relevant illustrative examples how knowledge and understanding of chemistry can be applied to good effect in the domestic and restaurant kitchen. Our basic premise is that the application of chemical and physical techniques in some restaurant kitchens to produce novel textures and flavor combinations has not only revolutionized the restaurant experience but also led to new enjoyment and appreciation of food. Examples include El Bulli (in Spain) and the Fat Duck (in the United Kingdom), two restaurants that since adopting a scientific approach to cooking have become widely regarded as among the finest in the world. All this begs the fundamental question: why should these novel textures and flavors provide so much real pleasure for the diners? Such questions are at the heart of the new science of Molecular Gastronomy. The term Molecular Gastronomy has gained a lot of publicity over the past few years, largely because some chefs have started to label their cooking style as Molecular Gastronomy (MG) and claimed to be bringing the use of scientific principles into the kitchen. However, we should note that three of the first chefs whose food was “labeled” as MG have recently written a new manifesto protesting against this label.(14) They rightly contend that what is important is the finest food prepared using the best available ingredients and using the most appropriate methods (which naturally includes the use of “new” ingredients, for example, gelling agents such as gellan or carageenan, and processes, such as vacuum distillation, etc.). We take a broad view of Molecular Gastronomy and argue it should be considered as the scientific study of why some food tastes terrible, some is mediocre, some good, and occasionally some absolutely delicious. We want to understand what it is that makes one dish delicious and another not, whether it be the choice of ingredients and how they were grown, the manner in which the food was cooked and presented, or the environment in which it was served. All will play their own roles, and there are valid scientific enquiries to be made to elucidate the extent to which they each affect the final result, but chemistry lies at the heart of all these diverse disciplines. The judgment of the quality of a dish is a highly personal matter as is the extent to which a particular meal is enjoyed or not. Nevertheless, we hypothesize that there are a number of conditions that must be met before food becomes truly enjoyable. These include many aspects of the flavor. Clearly, the food should have flavor; but what conditions are truly important? Does it matter, for example, how much flavor a dish has; is the concentration of the flavor molecules important? How important is the order in which the flavor molecules are released? How does the texture affect the flavor? The long-term aims of the science of MG are not only to provide chefs with tools to assist them in producing the finest dishes but also to elucidate the minimum set of conditions that are required for a dish to be described by a representative group of individuals as enjoyable or delicious, to find ways in which these conditions can be met (through the production of raw materials, in the cooking process, and in the way in which the food is presented), and hence to be able to predict reasonably well whether a particular dish or meal would be delicious. It may even become possible to give some quantitative measure of just how delicious a particular dish will be to a particular individual. Clearly, this is an immense task involving many different aspects of the chemical sciences: from the way in which food is produced through the harvesting, packaging, and transport to market via the processing and cooking to the presentation on the plate and how the body and brain react to the various stimuli presented. MG is distinct from traditional Food Science as it is concerned principally with the science behind any conceivable food preparation technique that may be used in a restaurant environment or even in domestic cooking from readily available ingredients to produce the best possible result. Conversely, Food Science is concerned, in large measure, with food production on an industrial scale and nutrition and food safety. A further distinction is that although Molecular Gastronomy includes the science behind gastronomic food, to understand gastronomy it is sometimes also necessary to appreciate its wider background. Thus, investigations of food history and culture may be subjects for investigation within the overall umbrella of Molecular Gastronomy. Further, gastronomy is characterized by the fact that strong, even passionate feelings can be involved. Leading chefs express their own emotions and visions through the dishes they produce. Some chefs stick closely to tradition, while others can be highly innovative and even provocative. In this sense gastronomy can be considered as an art form similar to painting and music. In this review we begin with a short description of our senses of taste and aroma and how we use these and other senses to provide the sensation of flavor. We will show that flavor is not simply the sum of the individual stimuli from the receptors in the tongue and nose but far more complex. In fact, the best we can say is that flavor is constructed in the mind using cues taken from all the senses including, but not limited to, the chemical senses of taste and smell. It is necessary to bear this background in mind throughout the whole review so we do not forget that even if we fully understand the complete chemical composition, physical state, and morphological complexity of a dish, this alone will not tell us whether it will provide an enjoyable eating experience. In subsequent sections we will take a walk through the preparation of a meal, starting with the raw ingredients to see how the chemical make up of even the apparently simplest ingredients such as carrots or tomatoes is greatly affected by all the different agricultural processes they may be subjected to before arriving in the kitchen. Once we have ingredients in the kitchen and start to cut, mix, and cook them, a vast range of chemical reactions come into play, destroying some and creating new flavor compounds. We devote a considerable portion of the review to the summary of some of these reactions. However, we must note that complete textbooks have failed to capture the complexity of many of these, so all we can do here is to provide a general overview of some important aspects that commonly affect flavor in domestic and restaurant kitchens. In nearly all cooking, the texture of the food is as important as its flavor: the flavor of roast chicken is pretty constant, but the texture varies from the wonderfully tender meat that melts in the mouth to the awful rubber chicken of so many conference dinners. Understanding and controlling texture not only of meats but also of sauces, souffles, breads, cakes, and pastries, etc., will take us on a tour through a range of chemical and physical disciplines as we look, for example, at the spinning of glassy sugars to produce candy-floss. Finally, after a discussion of those factors in our food that seem to contribute to making it delicious, we enter the world of brain chemistry, and much of that is speculative. We will end up with a list of areas of potential new research offering all chemists the opportunity to join us in the exciting new adventures of Molecular Gastronomy and the possibility of collaborating with chefs to create new and better food in their own local neighborhoods. Who ever said there is no such thing as a free lunch?

171 citations

Journal ArticleDOI
01 Jun 2012-Appetite
TL;DR: The results of this study imply that mere exposure and flavour-flavour learning are powerful strategies for changing children's acceptance of a novel vegetable, even though a substantial number of children are resistant to these types of exposure learning.

142 citations

Journal ArticleDOI
TL;DR: It is suggested that breastfeeding facilitates acceptance of novel flavours, not necessarily due to exposure to specific flavour compounds, in infants exposed to caraway flavour through mother's milk.

128 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: The conductivity bridge derives its bridge source from a self-contained vacuum tube oscillator adjusted to approximately 1,000 cycles as mentioned in this paper, which operates directly from the A.C. power source.
Abstract: The new Conductivity Bridge derives its bridge source. voltage from a self-contained vacuum tube oscilltor adjusted to approximately 1,000 cycles. Voltage for the amplifier and null indicator tubes is provided by a.builtin D.C. power supply which operates directly from the A.C. power source. 9-324 Conductivity Bridge, without Conductivity Cell, for use with 110 volts 5060 cycle A.C. 9-351.Cosi~uCvity Cell, for use with Conductivity Bridge, constant 0.8, $20.00

1,028 citations

Journal ArticleDOI
TL;DR: This report describes a set of scientific procedures used to assess the impact of foods and food ingredients on the expression of appetite (psychological and behavioural), and allows the evaluation of the strength of health claims about the effects of foods on appetite.
Abstract: This report describes a set of scientific procedures used to assess the impact of foods and food ingredients on the expression of appetite (psychological and behavioural). An overarching priority has been to enable potential evaluators of health claims about foods to identify justified claims and to exclude claims that are not supported by scientific evidence for the effect cited. This priority follows precisely from the principles set down in the PASSCLAIM report. The report allows the evaluation of the strength of health claims, about the effects of foods on appetite, which can be sustained on the basis of the commonly used scientific designs and experimental procedures. The report includes different designs for assessing effects on satiation as opposed to satiety, detailed coverage of the extent to which a change in hunger can stand alone as a measure of appetite control and an extensive discussion of the statistical procedures appropriate for handling data in this field of research. Because research in this area is continually evolving, new improved methodologies may emerge over time and will need to be incorporated into the framework. One main objective of the report has been to produce guidance on good practice in carrying out appetite research, and not to set down a series of commandments that must be followed.

858 citations

01 Jan 2016
TL;DR: The the senses considered as perceptual systems is universally compatible with any devices to read, and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you for downloading the senses considered as perceptual systems. Maybe you have knowledge that, people have search hundreds times for their favorite novels like this the senses considered as perceptual systems, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their desktop computer. the senses considered as perceptual systems is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the the senses considered as perceptual systems is universally compatible with any devices to read.

854 citations