scispace - formally typeset
Search or ask a question
Author

Per-Simon Kildal

Bio: Per-Simon Kildal is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Antenna (radio) & Electromagnetic reverberation chamber. The author has an hindex of 60, co-authored 504 publications receiving 13470 citations. Previous affiliations of Per-Simon Kildal include SP Technical Research Institute of Sweden & Norwegian Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Finite Difference Time Domain (FDTD) method is applied to industrial microwave ovens used in the food industry and theoretical and practical aspects of FDTD analysis for this purpose are dealt with.
Abstract: The Finite Difference Time Domain (FDTD) method is applied to industrial microwave ovens used in the food industry. Theoretical and practical aspects of FDTD analysis for this purpose are dealt wit...

31 citations

Proceedings Article
11 Apr 2011
TL;DR: In this paper, the gap waveguide can also be realized in printed technology creating a new type of inverted microstrip line, called microstrip gap waveguides, which has low loss and large bandwidths can be achieved.
Abstract: Recently, a new transmission line concept, called gap-waveguide, has been introduced. This technology generates a quasi-TEM mode in the gap between parallel metal plates and prohibits all other modes to propagate by making use of artificial magnetic conductors (AMCs) in the forms of e.g. lid of nails or mushrooms-type EBG surfaces. It has been shown how such geometry can replace standard microstrip lines and waveguides since it needs neither dielectric nor metal joints, being then an advantageous alternative that can be used for several applications at high frequency. This paper shows how the gap waveguide can also be realized in printed technology creating a new type of inverted microstrip line, called microstrip gap waveguide, which has low loss and large bandwidths can be achieved.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a lid made of zigzag wires printed periodically on narrow slices of ungrounded circuit boards, located vertically side by side, was used to suppress parallel plate and cavity modes in shielded microstrip circuits operating at the lower microwave frequency range.
Abstract: This work deals with the suppression of parallel plate and cavity modes in shielded microstrip circuits operating at the lower microwave frequency range. The suppression is achieved by using a lid made of zigzag wires printed periodically on narrow slices of ungrounded circuit boards, located vertically side by side. This structure is very compact both in periodicity and height, it suppresses cavity modes over about an octave 2:1 bandwidth, and it does not interfere with the packaged microstrip circuit.

30 citations

Journal ArticleDOI
TL;DR: A new method to predict the reflection coefficient of a complete large log-periodic array (with large number of elements) from the computed performance of a small part of the array, referred to as the partial array, is described.
Abstract: A new method is described in the paper to predict the reflection coefficient of a complete large log-periodic array (with large number of elements) from the computed performance of a small part of the array. The small part is referred to as the partial array. The method involves computing the embedded S-parameters between all the elements of this partial array and then using these S-parameters to predict the performance of the full array. As an example, the method has been applied to optimize the Eleven antenna for 2-13 GHz. The result of the optimization is that the reflection coefficient is improved significantly to be below -10 dB over the whole frequency band. The results have been verified by measurements.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: The potential of transformation optics to create functionalities in which the optical properties can be designed almost at will is reviewed, which can be used to engineer various optical illusion effects, such as the invisibility cloak.
Abstract: Transformation optics describes the capability to design the path of light waves almost at will through the use of metamaterials that control effective materials properties on a subwavelength scale. In this review, the physics and applications of transformation optics are discussed.

1,085 citations

Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations