scispace - formally typeset
Search or ask a question
Author

Per-Simon Kildal

Bio: Per-Simon Kildal is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Antenna (radio) & Electromagnetic reverberation chamber. The author has an hindex of 60, co-authored 504 publications receiving 13470 citations. Previous affiliations of Per-Simon Kildal include SP Technical Research Institute of Sweden & Norwegian Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The first approximation to the aperture efficiency of a paraboloidal reflector antenna is called the feed efficiency as mentioned in this paper, which is derived by factorizing the antenna's feed efficiency into subefficiencies which account for losses due to spillover, cross polarization, nonuniform aperture illumination, and phase errors.
Abstract: The first approximation to the aperture efficiency of a paraboloidal reflector antenna is called the feed efficiency. The factorization of the feed efficiency into subefficiencies which account for losses due to spillover, cross polarization, nonuniform aperture illumination, and phase errors is considered. The relations between the radiation patterns of circularly and linearly polarized feeds are also derived.

139 citations

Journal ArticleDOI
TL;DR: In this article, a new type of narrow band filter with good electrical performance and manufacturing flexibility, based on the newly introduced groove gap waveguide technology, was presented, which works at Ku band with 1% fractional bandwidth.
Abstract: This paper presents a new type of narrow band filter with good electrical performance and manufacturing flexibility, based on the newly introduced groove gap waveguide technology. The designed third and fifth-order filters work at Ku band with 1% fractional bandwidth. These filter structures are manufactured with an allowable gap between two metal blocks, in such a way that there is no requirement for electrical contact and alignment between the blocks. This is a major manufacturing advantage compared to normal rectangular waveguide filters. The measured results of the manufactured filters show reasonably good agreement with the full-wave simulated results, without any tuning or adjustments.

138 citations

Journal ArticleDOI
TL;DR: In this paper, a wideband 2x2-slot element for a 60 GHz antenna array is designed by making use of two double-sided printed circuit boards (PCBs).
Abstract: A wideband 2x2-slot element for a 60-GHz antenna array is designed by making use of two double-sided printed circuit boards (PCBs). The upper PCB contains the four radiating cavity-backed slots, where the cavity is formed in substrate-integrated waveguide (SIW) using metalized via holes. The SIW cavity is excited by a coupling slot. The excitation slot is fed by a microstrip-ridge gap waveguide formed in the air gap between the upper and lower PCBs. The lower PCB contains the microstrip line, being short-circuited to the ground plane of the lower PCB with via holes, and with additional metalized via holes alongside the microstrip line to form a stopband for parallel-platemodes in the air gap. The designed element can be used in large arrays with distribution networks realized in such microstrip-ridge gap waveguide technology. Therefore, the present paper describes a generic study in an infinite array environment, and performance is measured in terms of the active reflection coefficient S11 and the power lost in grating lobes. The study shows that the radiation characteristics of the array antenna is considerably improved by using a soft surface EBG-type SIW corrugation between each 2x2-slot element in E-plane to reduce the mutual coupling. The study is verified by measurements on a 4x4 element array surrounded by dummy elements and including a transition to rectangular waveguide WR15.

134 citations

Journal Article
TL;DR: In this article, the authors discuss and demonstrate the relation between electromagnetic bandgap surfaces (EBG) used to realize artificial magnetic conductors and the so-called soft and hard surfaces in electromagnetics, with respect to their STOP and GO characteristics for surface waves.
Abstract: We discuss and demonstrate by measurements and computations the relation between electromagnetic bandgap surfaces (EBG) used to realize artificial magnetic conductors and the so-called soft and hard surfaces in electromagnetics, with respect to their STOP and GO characteristics for surface waves. We show how the main characteristics of such surfaces can be modeled by using ideal surfaces representing perfect magnetic conductors (PMC) and PEC/PMC strip grids. Unfortunately, commercial codes do not allow such modeling for general shapes of the surfaces.

134 citations

Journal ArticleDOI
TL;DR: In this paper, the angular plane-wave distribution in a rectangular metallic cavity is analyzed in detail, and the results show that the angular distribution in space is uniform provided that the three linear dimensions of the cavity are sufficiently large, and do not deviate too much from each other.
Abstract: A rectangular metallic cavity is known to support a number of resonant cavity modes. Each of these modes can be described as a sum of eight plane waves incident from different angles. This paper studies how these plane waves are angularly distributed in space, which is of interest when the cavity is used to simulate multipath environment. The results show that the angular distribution in space is uniform provided that the three linear dimensions of the chamber are sufficiently large, and do not deviate too much from each other. As an example, two rectangular cavities with dimensions 1 m×0.8 m×1 m and 5.5 m×2.5 m×3.5 m are analyzed in detail, and are shown to have uniform plane-wave distributions. We also demonstrate how the chamber geometry may be chosen in order to weight the angular plane-wave distribution in the elevation plane. A result of the study is that we detect a 25 MHz frequency band with very few modes in a small chamber designed for use with reduced accuracy in the GSM 900 MHz band. We also propose how this chamber can be modified to obtain uniform mode distribution over this frequency band. © 2001 John Wiley & Sons, Inc. Microwave Opt Technol Lett 30: 386–391, 2001.

128 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: The potential of transformation optics to create functionalities in which the optical properties can be designed almost at will is reviewed, which can be used to engineer various optical illusion effects, such as the invisibility cloak.
Abstract: Transformation optics describes the capability to design the path of light waves almost at will through the use of metamaterials that control effective materials properties on a subwavelength scale. In this review, the physics and applications of transformation optics are discussed.

1,085 citations

Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations