scispace - formally typeset
Search or ask a question
Author

Perukrishnen Vytelingum

Bio: Perukrishnen Vytelingum is an academic researcher from University of Southampton. The author has contributed to research in topics: Smart grid & Bidding. The author has an hindex of 18, co-authored 39 publications receiving 2313 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A research agenda for making the smart grid a reality is presented, with a focus on energy efficiency, smart grids and smart cities.
Abstract: The phenomenal growth in material wealth experienced in developed countries throughout the twentieth century has largely been driven by the availability of cheap energy derived from fossil fuels (originally coal, then oil, and most recently natural gas). However, the continued availability of this cheap energy cannot be taken for granted given the growing concern that increasing demand for these fuels (and particularly, demand for oil) will outstrip our ability to produce them (so called 'peak oil'). Many mature oil and gas fields around the world have already peaked and their annual production is now steadily declining. Predictions of when world oil production will peak vary between 0-20 years into the future, but even the most conservative estimates provide little scope for complacency given the significant price increases that peak oil is likely to precipitate. Furthermore, many of the oil and gas reserves that do remain are in environmentally or politically sensitive regions of the world where threats to supply create increased price volatility (as evidenced by the 2010 Deepwater Horizon disaster and 2011 civil unrest in the Middle East). Finally, the growing consensus on the long term impact of carbon emissions from burning fossil fuels suggests that even if peak oil is avoided, and energy security assured, a future based on fossil fuel use will expose regions of the world to damaging climate change that will make the lives of many of the world's poorest people even harder.

513 citations

Proceedings ArticleDOI
02 May 2011
TL;DR: This paper introduces a novel model of a Decentralised Demand Side Management mechanism that allows agents, by adapting the deferment of their loads based on grid prices, to coordinate in a decentralised manner and demonstrates that, through an emergent coordination of the agents, the peak demand of domestic consumers in the grid can be reduced.
Abstract: Central to the vision of the smart grid is the deployment of smart meters that will allow autonomous software agents, representing the consumers, to optimise their use of devices and heating in the smart home while interacting with the grid. However, without some form of coordination, the population of agents may end up with overly-homogeneous optimised consumption patterns that may generate significant peaks in demand in the grid. These peaks, in turn, reduce the efficiency of the overall system, increase carbon emissions, and may even, in the worst case, cause blackouts. Hence, in this paper, we introduce a novel model of a Decentralised Demand Side Management (DDSM) mechanism that allows agents, by adapting the deferment of their loads based on grid prices, to coordinate in a decentralised manner. Specifically, using average UK consumption profiles for 26M homes, we demonstrate that, through an emergent coordination of the agents, the peak demand of domestic consumers in the grid can be reduced by up to 17% and carbon emissions by up to 6%. We also show that our DDSM mechanism is robust to the increasing electrification of heating in UK homes (i.e., it exhibits a similar efficiency).

389 citations

Proceedings ArticleDOI
10 May 2010
TL;DR: This paper provides a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions and shows that in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh.
Abstract: The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, requires more generation capacity, results in more carbon emissions, and, in the worst case, breaks down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).

354 citations

Proceedings ArticleDOI
10 May 2010
TL;DR: A novel market-based mechanism based on the Continuous Double Auction and automatically manages the congestion within the system by pricing the flow of electricity and introduces mechanisms to ensure the system can cope with unforseen demand or increased supply capacity in real time.
Abstract: The vision of the Smart Grid includes the creation of intelligent electricity supply networks to allow efficient use of energy resources, reduce carbon emissions and are robust to failures. One of the key assumptions underlying this vision is that it will be possible to manage the trading of electricity between homes and micro-grids while coping with the inherent real-time dynamism in electricity demand and supply. The management of these trades needs to take into account the fact that most, if not all, of the actors in the system are self-interested and transmission line capacities are constrained. Against this background, we develop and evaluate a novel market-based mechanism and novel trading strategies for the Smart Grid. Our mechanism is based on the Continuous Double Auction (CDA) and automatically manages the congestion within the system by pricing the flow of electricity. We also introduce mechanisms to ensure the system can cope with unforseen demand or increased supply capacity in real time. Finally, we develop new strategies that we show achieve high market efficiency (typically over 90%).

207 citations

Journal ArticleDOI
TL;DR: A novel bidding strategy that autonomous trading agents can use to participate in Continuous Double Auctions (CDAs) that is based on both short and long-term learning that allows such agents to adapt their bidding behaviour to be efficient in a wide variety of environments.

165 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review aims to provide an updated and structured investigation of novelty detection research papers that have appeared in the machine learning literature during the last decade.

1,425 citations

Journal ArticleDOI
TL;DR: This work provides a comprehensive overview of fundamental principles that underpin blockchain technologies, such as system architectures and distributed consensus algorithms, and discusses opportunities, potential challenges and limitations for a number of use cases, ranging from emerging peer-to-peer energy trading and Internet of Things applications, to decentralised marketplaces, electric vehicle charging and e-mobility.
Abstract: Blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. Numerous sources coming from these backgrounds identify blockchains as having the potential to bring significant benefits and innovation. Blockchains promise transparent, tamper-proof and secure systems that can enable novel business solutions, especially when combined with smart contracts. This work provides a comprehensive overview of fundamental principles that underpin blockchain technologies, such as system architectures and distributed consensus algorithms. Next, we focus on blockchain solutions for the energy industry and inform the state-of-the-art by thoroughly reviewing the literature and current business cases. To our knowledge, this is one of the first academic, peer-reviewed works to provide a systematic review of blockchain activities and initiatives in the energy sector. Our study reviews 140 blockchain research projects and startups from which we construct a map of the potential and relevance of blockchains for energy applications. These initiatives were systematically classified into different groups according to the field of activity, implementation platform and consensus strategy used. 1 Opportunities, potential challenges and limitations for a number of use cases are discussed, ranging from emerging peer-to-peer (P2P) energy trading and Internet of Things (IoT) applications, to decentralised marketplaces, electric vehicle charging and e-mobility. For each of these use cases, our contribution is twofold: first, in identifying the technical challenges that blockchain technology can solve for that application as well as its potential drawbacks, and second in briefly presenting the research and industrial projects and startups that are currently applying blockchain technology to that area. The paper ends with a discussion of challenges and market barriers the technology needs to overcome to get past the hype phase, prove its commercial viability and finally be adopted in the mainstream.

1,399 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the concept of a blockchain-based microgrid energy market without the need for central intermediaries, where consumers and prosumers can trade self-produced energy in a peer-to-peer fashion.

1,010 citations

Journal ArticleDOI
TL;DR: This survey comprehensively explores the means/tariffs that the power utility takes to incentivize users to reschedule their energy usage patterns and outlines the potential challenges and future research directions in the context of demand response.
Abstract: The smart grid is widely considered to be the informationization of the power grid. As an essential characteristic of the smart grid, demand response can reschedule the users’ energy consumption to reduce the operating expense from expensive generators, and further to defer the capacity addition in the long run. This survey comprehensively explores four major aspects: 1) programs; 2) issues; 3) approaches; and 4) future extensions of demand response. Specifically, we first introduce the means/tariffs that the power utility takes to incentivize users to reschedule their energy usage patterns. Then we survey the existing mathematical models and problems in the previous and current literatures, followed by the state-of-the-art approaches and solutions to address these issues. Finally, based on the above overview, we also outline the potential challenges and future research directions in the context of demand response.

761 citations

Journal ArticleDOI
TL;DR: To address the intrinsically stochastic availability of renewable energy sources (RES), a novel power scheduling approach is introduced that involves the actual renewable energy as well as the energy traded with the main grid, so that the supply-demand balance is maintained.
Abstract: Due to its reduced communication overhead and robustness to failures, distributed energy management is of paramount importance in smart grids, especially in microgrids, which feature distributed generation (DG) and distributed storage (DS). Distributed economic dispatch for a microgrid with high renewable energy penetration and demand-side management operating in grid-connected mode is considered in this paper. To address the intrinsically stochastic availability of renewable energy sources (RES), a novel power scheduling approach is introduced. The approach involves the actual renewable energy as well as the energy traded with the main grid, so that the supply-demand balance is maintained. The optimal scheduling strategy minimizes the microgrid net cost, which includes DG and DS costs, utility of dispatchable loads, and worst-case transaction cost stemming from the uncertainty in RES. Leveraging the dual decomposition, the optimization problem formulated is solved in a distributed fashion by the local controllers of DG, DS, and dispatchable loads. Numerical results are reported to corroborate the effectiveness of the novel approach.

718 citations