scispace - formally typeset
Search or ask a question
Author

Petar V. Kokotovic

Bio: Petar V. Kokotovic is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Nonlinear system & Adaptive control. The author has an hindex of 83, co-authored 354 publications receiving 40395 citations. Previous affiliations of Petar V. Kokotovic include Washington State University & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: Two new adaptive design tools are presented and it is shown how they can be used to construct systematic design procedures for non-linear systems with incomplete state information.
Abstract: Motivated by several recent adaptive non-linear control results which use either full-state or single-output feedback, we present two new adaptive design tools and show how they can be used to construct systematic design procedures for non-linear systems with incomplete state information. The main features of these procedures are illustrated on a simple third-order system. We also provide the geometric conditions which give a co-ordinate-free characterization of one of the partial-state-feedback forms to which these procedures are applicable.

8 citations

Proceedings ArticleDOI
26 Jun 1991
TL;DR: Examining adaptive controllers for a first order, linear, continuous time plant, with different estimators, and control laws, explicit solutions completely describing the nonliner behavior of the resultant adaptive systems are obtained.
Abstract: Examining adaptive controllers for a first order, linear, continuous time plant, with different estimators, and control laws, we obtain explicit solutions completely describing the nonliner behavior of the resultant adaptive systems. Some of these adaptive systems exhibit either finite time escapes, or other forms of unbounded behavior, due to a loss of stabilizability of the estimated model. Some fixes for the loss of stabilizability are analyzed. Implications of these results for the general indirect adaptive control case are discussed.

8 citations

Journal ArticleDOI
TL;DR: Adaptive schemes can exhibit a "nonlinear" instability in which the linear system with fixed parameters is stable as mentioned in this paper, which is a Hopf bifurcation caused by unmodeled dynamics.

8 citations

Proceedings ArticleDOI
29 Jun 1994
TL;DR: In this article, an adaptive hysteresis inverse controller for closed-loop error systems is proposed, based on which linear adaptive control theory is applied to develop adaptive laws to update the controller parameters.
Abstract: We develop an inverse for a parametrized hysteresis model and present its discrete-time version. We then design two adaptive hysteresis inverse controllers for discrete time systems with an unknown hysteresis at the output: one for systems with a known linear part-followed by an unknown hysteresis and the other for both the linear part and the hysteresis unknown. Our control schemes consist of a linear feedforward part and a linear-like feedback part combined with an adaptive hysteresis inverse. Despite the bilinear appearance of the parameters of the linear part and the hysteresis, a linear parametrization of the closed-loop error system is achieved, based on which we apply the linear adaptive control theory to develop adaptive laws to update the controller parameters.

8 citations


Cited by
More filters
Book
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.

11,085 citations

Proceedings ArticleDOI
02 Sep 2004
TL;DR: Free MATLAB toolbox YALMIP is introduced, developed initially to model SDPs and solve these by interfacing eternal solvers by making development of optimization problems in general, and control oriented SDP problems in particular, extremely simple.
Abstract: The MATLAB toolbox YALMIP is introduced. It is described how YALMIP can be used to model and solve optimization problems typically occurring in systems and control theory. In this paper, free MATLAB toolbox YALMIP, developed initially to model SDPs and solve these by interfacing eternal solvers. The toolbox makes development of optimization problems in general, and control oriented SDP problems in particular, extremely simple. In fact, learning 3 YALMIP commands is enough for most users to model and solve the optimization problems

7,676 citations

Proceedings ArticleDOI
15 Oct 1995
TL;DR: In this article, the authors present a model for dynamic control systems based on Adaptive Control System Design Steps (ACDS) with Adaptive Observers and Parameter Identifiers.
Abstract: 1. Introduction. Control System Design Steps. Adaptive Control. A Brief History. 2. Models for Dynamic Systems. Introduction. State-Space Models. Input/Output Models. Plant Parametric Models. Problems. 3. Stability. Introduction. Preliminaries. Input/Output Stability. Lyapunov Stability. Positive Real Functions and Stability. Stability of LTI Feedback System. Problems. 4. On-Line Parameter Estimation. Introduction. Simple Examples. Adaptive Laws with Normalization. Adaptive Laws with Projection. Bilinear Parametric Model. Hybrid Adaptive Laws. Summary of Adaptive Laws. Parameter Convergence Proofs. Problems. 5. Parameter Identifiers and Adaptive Observers. Introduction. Parameter Identifiers. Adaptive Observers. Adaptive Observer with Auxiliary Input. Adaptive Observers for Nonminimal Plant Models. Parameter Convergence Proofs. Problems. 6. Model Reference Adaptive Control. Introduction. Simple Direct MRAC Schemes. MRC for SISO Plants. Direct MRAC with Unnormalized Adaptive Laws. Direct MRAC with Normalized Adaptive Laws. Indirect MRAC. Relaxation of Assumptions in MRAC. Stability Proofs in MRAC Schemes. Problems. 7. Adaptive Pole Placement Control. Introduction. Simple APPC Schemes. PPC: Known Plant Parameters. Indirect APPC Schemes. Hybrid APPC Schemes. Stabilizability Issues and Modified APPC. Stability Proofs. Problems. 8. Robust Adaptive Laws. Introduction. Plant Uncertainties and Robust Control. Instability Phenomena in Adaptive Systems. Modifications for Robustness: Simple Examples. Robust Adaptive Laws. Summary of Robust Adaptive Laws. Problems. 9. Robust Adaptive Control Schemes. Introduction. Robust Identifiers and Adaptive Observers. Robust MRAC. Performance Improvement of MRAC. Robust APPC Schemes. Adaptive Control of LTV Plants. Adaptive Control for Multivariable Plants. Stability Proofs of Robust MRAC Schemes. Stability Proofs of Robust APPC Schemes. Problems. Appendices. Swapping Lemmas. Optimization Techniques. Bibliography. Index. License Agreement and Limited Warranty.

4,378 citations

Book
26 Jun 2003
TL;DR: Preface, Notations 1.Introduction to Time-Delay Systems I.Robust Stability Analysis II.Input-output stability A.LMI and Quadratic Integral Inequalities Bibliography Index
Abstract: Preface, Notations 1.Introduction to Time-Delay Systems I.Frequency-Domain Approach 2.Systems with Commensurate Delays 3.Systems withIncommensurate Delays 4.Robust Stability Analysis II.Time Domain Approach 5.Systems with Single Delay 6.Robust Stability Analysis 7.Systems with Multiple and Distributed Delays III.Input-Output Approach 8.Input-output stability A.Matrix Facts B.LMI and Quadratic Integral Inequalities Bibliography Index

4,200 citations

Journal ArticleDOI
Arie Levant1
TL;DR: In this article, the authors proposed arbitrary-order robust exact differentiators with finite-time convergence, which can be used to keep accurate a given constraint and feature theoretically-infinite-frequency switching.
Abstract: Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptot...

2,954 citations