scispace - formally typeset
Search or ask a question
Author

Petar Vukoslavcevic

Bio: Petar Vukoslavcevic is an academic researcher from University of Montenegro. The author has contributed to research in topics: Vorticity & Turbulence. The author has an hindex of 10, co-authored 27 publications receiving 638 citations. Previous affiliations of Petar Vukoslavcevic include University of Maryland, College Park.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the statistical properties of both the velocity and the vorticity fields of a nominally zero-pressure-gradient turbulent boundary layer at Rδ = 27650 (Rθ = 2685) have been simultaneously measured.
Abstract: Many of the statistical properties of both the velocity and the vorticity fields of a nominally zero-pressure-gradient turbulent boundary layer at Rδ = 27650 (Rθ = 2685) have been simultaneously measured. The measurements were made with a small nine-sensor hot-wire probe which can resolve the turbulence to within about six Kolmogorov microscales just above the sublayer. The statistical properties of the velocity vector field compare very well with other laboratory measurements and with direct numerical simulations when Reynolds-number dependence is taken into account. The statistical properties of the vorticity field are also in generally good agreement with the few other measurements and with the direct numerical simulations available for comparison. Near the wall, r.m.s. measurements show that the fluctuating spanwise vorticity is the dominant component, but in the outer part of the boundary layer all the component r.m.s. values are nearly equal. R.m.s. measurements of the nine individual velocity gradients show that the gradients normal to the wall of all three velocity components are the largest, with peaks occurring near the wall as expected. Gradients in the streamwise direction are everywhere small. One-dimensional spectra of the vorticity components show the expected shift of the maximum energy to higher wavenumbers compared to spectra of the velocity components at the same location in the flow. The budget of the transport equation for total enstrophy indicates that the viscous dissipation rate is primarily balanced by the viscous diffusion rate in the buffer layer and by the rotation and stretching rate in the logarithmic layer.

177 citations

Journal ArticleDOI
TL;DR: In this article, a nine-sensor hot-wire probe is described which is capable of simultaneously measuring the velocity and vorticity vectors with a spatial resolution of about six Kolmogorov microscales just above the viscous sublayer in a thick turbulent boundary layer at a Reynolds number of Rθ = 2685.
Abstract: A nine-sensor hot-wire probe is described which is capable of simultaneously measuring the velocity and vorticity vectors with a spatial resolution of about six Kolmogorov microscales just above the viscous sublayer in a thick turbulent boundary layer at a Reynolds number of Rθ = 2685. Results from tests of the probe performance are presented to show that the three velocity components at each of its three arrays are measured with sufficient accuracy to allow determination of velocity gradients and from them the vorticity vector. Measurements with this probe of statistical properties of the velocity and vorticity fields of the turbulent boundary layer are given in Part 2 of this paper. When compared to the results of others, they further demonstrate the capability of this probe to measure simultaneously the velocity and vorticity vectors in turbulent flows of low to moderate Reynolds numbers.

108 citations

Journal ArticleDOI
TL;DR: A review of the principal experimental methods currently available to simultaneously measure all the terms of the velocity gradient tensor of turbulent flows can be found in this paper, where data-reduction algorithms, spatial-resolution issues, and the use of Taylor's hypothesis are addressed in evaluating the accuracy of various methods.
Abstract: This article reviews the principal experimental methods currently available to simultaneously measure all the terms of the velocity gradient tensor of turbulent flows. These methods have been available only for a little more than 20 years. They have provided access to the most fundamental and defining properties of turbulence. The methods include small, multisensor, hot-wire probes that provide single-location, time-resolved measurements of the tensor and various optical arrangements, most of which provide the tensor information over a larger spatial extent but, in most cases, without resolution in time. Data-reduction algorithms, spatial-resolution issues, and the use of Taylor's hypothesis are addressed in evaluating the accuracy of the various methods.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the structure of energy-containing turbulence in the outer region of a zero-pressure-gradient boundary layer has been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane.
Abstract: The structure of energy-containing turbulence in the outer region of a zero-pressure- gradient boundary layer has been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane. Experiments performed at three Reynolds numbers in the range 930 0) that occur on a locus inclined at 30–60° to the wall.In the outer layer, hairpin vortices occur in streamwise-aligned packets that propagate with small velocity dispersion. Packets that begin in or slightly above the buffer layer are very similar to the packets created by the autogeneration mechanism (Zhou, Adrian & Balachandar 1996). Individual packets grow upwards in the streamwise direction at a mean angle of approximately 12°, and the hairpins in packets are typically spaced several hundred viscous lengthscales apart in the streamwise direction. Within the interior of the envelope the spatial coherence between the velocity fields induced by the individual vortices leads to strongly retarded streamwise momentum, explaining the zones of uniform momentum observed by Meinhart & Adrian (1995). The packets are an important type of organized structure in the wall layer in which relatively small structural units in the form of three-dimensional vortical structures are arranged coherently, i.e. with correlated spatial relationships, to form much longer structures. The formation of packets explains the occurrence of multiple VITA events in turbulent ‘bursts’, and the creation of Townsend's (1958) large-scale inactive motions. These packets share many features of the hairpin models proposed by Smith (1984) and co-workers for the near-wall layer, and by Bandyopadhyay (1980), but they are shown to occur in a hierarchy of scales across most of the boundary layer.In the logarithmic layer, the coherent vortex packets that originate close to the wall frequently occur within larger, faster moving zones of uniform momentum, which may extend up to the middle of the boundary layer. These larger zones are the induced interior flow of older packets of coherent hairpin vortices that originate upstream and over-run the younger, more recently generated packets. The occurence of small hairpin packets in the environment of larger hairpin packets is a prominent feature of the logarithmic layer. With increasing Reynolds number, the number of hairpins in a packet increases.

1,627 citations

Journal ArticleDOI
TL;DR: In this article, a publisher's version of an article published in Journal of Fluid Mechanics © 2007 Cambridge University Press, Cambridge, UK. www.cambridge.edu.org/
Abstract: This is a publisher’s version of an article published in Journal of Fluid Mechanics © 2007 Cambridge University Press. www.cambridge.org/

1,197 citations

01 Jan 1992
TL;DR: In this article, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames, which can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.
Abstract: To improve the performance of particle image velocimetry in measuring instantaneous velocity fields, direct cross-correlation of image fields can be used in place of auto-correlation methods of interrogation of double- or multiple-exposure recordings. With improved speed of photographic recording and increased resolution of video array detectors, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames. By knowing the extent of image shifting used in a multiple-exposure and by a priori knowledge of the mean flow-field, the cross-correlation of different sized interrogation spots with known separation can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.

1,101 citations

Journal ArticleDOI
TL;DR: In this article, a drag reduction mechanism by riblets with small spacings was proposed to reduce viscous drag by restricting the location of the streamwise vortices above the wetted surface.
Abstract: Direct numerical simulations of turbulent flows over riblet-mounted surfaces are performed to educe the mechanism of drag reduction by riblets. The computed drag on the riblet surfaces is in good agreement with the existing experimental data. The mean-velocity profiles show upward and downward shifts in the log–law for drag-decreasing and drag-increasing cases, respectively. Turbulence statistics above the riblets are computed and compared with those above a flat plate. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are reduced in drag-reducing configurations. Quadrant analysis indicates that riblets mitigate the positive Reynolds-shear-stress-producing events in drag-reducing configurations. From examination of the instantaneous flow fields, a drag reduction mechanism by riblets is proposed: riblets with small spacings reduce viscous drag by restricting the location of the streamwise vortices above the wetted surface such that only a limited area of the riblets is exposed to the downwash of high-speed fluid that the vortices induce.

657 citations