scispace - formally typeset
Search or ask a question
Author

Peter A. Ajibade

Bio: Peter A. Ajibade is an academic researcher from University of KwaZulu-Natal. The author has contributed to research in topics: Dithiocarbamate & Nanoparticle. The author has an hindex of 26, co-authored 153 publications receiving 2142 citations. Previous affiliations of Peter A. Ajibade include University of Fort Hare & University of Zululand.


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of the analytical and spectroscopic data suggest a square planar geometry for Cu(II) and Ni( II) complexes and an octahedral geometry for the Co(ii) complex and the ligand behaves as a dibasic tetradentate ligand with the dioxygen-dinitrogen donor atom system oriented towards the central metal ion.
Abstract: Co(II), Ni(II), Zn(II) and Cu(II) complexes of (3E)-3-[(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one (DEPH2) derived from ethylenediamine, 2',4'-dihydroxyacetophenone and 1-phenylbutane-1,3-dione have been synthesized and characterized by elemental analysis, FTIR, UV-Visible spectroscopy, and screened to establish their potential as antibacterial agents, antioxidants and DPPH radical scavengers. The FTIR spectra showed that the ligand behaves as a dibasic tetradentate ligand with the dioxygen-dinitrogen donor atom system oriented towards the central metal ion. The analytical and spectroscopic data suggest a square planar geometry for Cu(II) and Ni(II) complexes and an octahedral geometry for the Co(II) complex. The ligand and their metal complexes were screened for antibacterial activity against Gram (+) and Gram (-) bacteria by the agar well diffusion method. In addition, the antioxidant activities of the complexes were also investigated through their scavenging effect on DPPH and ABTS radicals. The obtained IC50 value of the DPPH activity for the copper complex (2.08 ± 0.47 µM) and that of the ABTS activity for the copper complex (IC50 = 2.11 + 1.69 µM) were higher than the values obtained for the other compounds.

120 citations

Journal ArticleDOI
TL;DR: The use of Schiff bases as DNA-cleaving agents and its mode of interaction and free-radical scavenging properties are described in this paper. But, the application of Schiff base and its complexes has not been discussed.
Abstract: Abstract The huge research on Schiff base coordination complexes in the past few decades has given rise to several new molecules that have been of biological importance. The ease with which the Schiff base ligands are designed and prepared and their pattern is elucidated have made them to be referred to as “fortunate ligands” possessing azomethine derivatives, the C=N linkage that is essential for biological activity, including antibacterial, antifungal, antioxidant, anticancer, and diuretic activities. A variety of Schiff base and its complexes have been studied as model molecules for biological oxygen carrier systems. The uses of Schiff bases as DNA-cleaving agents and its mode of interaction and free-radical scavenging properties are described. The review encapsulates the applications of Schiff bases and their complexes.

80 citations

Journal ArticleDOI
TL;DR: Thermogravimetric analysis of the complexes show a single weight loss to give MS (M = Zn, Cd, Hg) indicating that they might be useful as single source precursors for the synthesis of MS nanoparticles and thin films.
Abstract: Zn(II), Cd(II) and Hg(II) complexes of N-methyl-N-phenyl dithiocarbamate have been synthesized and characterized by elemental analysis and spectral studies (IR, 1H and 13C-NMR). The single crystal X-ray structure of the mercury complex revealed that the complex contains a Hg centre with a distorted tetrahedral coordination sphere in which the dinuclear Hg complex resides on a crystallographic inversion centre and each Hg atom is coordinated to four S atoms from the dithiocarbamate moiety. One dithiocarbamate ligand acts as chelating ligand while the other acts as chelating bridging ligand between two Hg atoms, resulting in a dinuclear eight-member ring. The course of the thermal degradation of the complexes has been investigated using thermogravimetric and differential thermal analyses techniques. Thermogravimetric analysis of the complexes show a single weight loss to give MS (M = Zn, Cd, Hg) indicating that they might be useful as single source precursors for the synthesis of MS nanoparticles and thin films.

78 citations

Journal ArticleDOI
19 Feb 2015
TL;DR: Ruthenium compounds are highly regarded as potential drug candidates as discussed by the authors, and they offer the potential of reduced toxicity and can be tolerated in vivo, however, they are not suitable for use in biological applications.
Abstract: Ruthenium compounds are highly regarded as potential drug candidates. The compounds offer the potential of reduced toxicity and can be tolerated in vivo. The various oxidation states, different mechanism of action, and the ligand substitution kinetics of ruthenium compounds give them advantages over platinum-based complexes, thereby making them suitable for use in biological applications. Several studies have focused attention on the interaction between active ruthenium complexes and their possible biological targets. In this paper, we review several ruthenium compounds which reportedly possess promising cytotoxic profiles: from the discovery of highly active compounds imidazolium [trans-tetrachloro(dmso)(imidazole)ruthenate(III)] (NAMI-A), indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)](KP1019), and sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) to the recent work based on both inorganic and organometallic ruthenium(II) compounds. Half-sandwich organometallic ruthenium complexes offer the opportunity of derivatization at the arene moiety, while the three remaining coordination sites on the metal centre can be functionalised with various coordination groups of various monoligands. It is clear from the review that these mononuclear ruthenium(II) compounds represent a strongly emerging field of research that will soon culminate into several ruthenium based antitumor agents.

78 citations

Journal ArticleDOI
TL;DR: The crystal structures of the zinc complexes (Zn2L14 and Zn2l24) are also reported in this article, showing the presence of distorted trigonal bipyramidal and tetrahedral coordination geometry about the metal ions.

74 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Jan 1912

1,225 citations

Journal Article
TL;DR: In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and the phonon broadening of these lines is considered.
Abstract: We analyze theoretically the optical properties of ideal semiconductor crystallites so small that they show quantum confinement in all three dimensions [quantum dots (QD's)]. In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and we consider the phonon broadening of these lines. The lowest interband transition will saturate like a two-level system, without exchange and Coulomb screening. Depending on the broadening, the absorption and the changes in absorption and refractive index resulting from saturation can become very large, and the local-field effects can become so strong as to give optical bistability without external feedback. The small QD limit is more readily achieved with narrow-band-gap semiconductors.

788 citations

Journal ArticleDOI
TL;DR: This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties, and highlights the catalytic activity and the photoinduced activation of r Ruthenium (ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Abstract: Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.

727 citations