scispace - formally typeset
Search or ask a question
Author

Peter A. W. Lewis

Bio: Peter A. W. Lewis is an academic researcher from IBM. The author has contributed to research in topics: Discrete-time Fourier transform & Discrete Fourier transform (general). The author has an hindex of 14, co-authored 19 publications receiving 2200 citations. Previous affiliations of Peter A. W. Lewis include Imperial College London & Birkbeck, University of London.

Papers
More filters
Journal ArticleDOI
TL;DR: A description of the alogorithm and its programming is given here and followed by a theorem relating its operands, the finite sample sequences, to the continuous functions they often are intended to approximate.
Abstract: The advent of the fast Fourier transform method has greatly extended our ability to implement Fourier methods on digital computers A description of the alogorithm and its programming is given here and followed by a theorem relating its operands, the finite sample sequences, to the continuous functions they often are intended to approximate An analysis of the error due to discrete sampling over finite ranges is given in terms of aliasing Procedures for computing Fourier integrals, convolutions and lagged products are outlined

833 citations

Journal ArticleDOI
TL;DR: The problem of establishing the correspondence between the discrete transforms and the continuous functions with which one is usually dealing is described and formulas and empirical results displaying the effect of optimal parameters on computational efficiency and accuracy are given.

251 citations

Journal ArticleDOI
TL;DR: In this article, the properties of the fast Fourier transform are related to commonly used integral transforms including the Fourier Transform and convolution integrals, and the relationship between the Fast Fourier Transformer and Fourier series is discussed.
Abstract: The fast Fourier transform is a computational procedure for calculating the finite Fourier transform of a time series. In this paper, the properties of the finite Fourier transform are related to commonly used integral transforms including the Fourier transform and convolution integrals. The relationship between the finite Fourier transform and Fourier series is also discussed.

206 citations

Journal ArticleDOI
TL;DR: The fast Fourier transform algorithm has a long and interesting history that has only recently been appreciated as discussed by the authors, and the contributions of many investigators are described and placed in historical perspective in this paper.
Abstract: The fast Fourier transform algorithm has a long and interesting history that has only recently been appreciated. In this paper, the contributions of many investigators are described and placed in historical perspective.

196 citations

Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength.
Abstract: supported by funds provided directly from the Chief of Naval Research under Grant NR-42-284, and the National Science Foundation under Grant NSF-75-02026

188 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1978
TL;DR: A comprehensive catalog of data windows along with their significant performance parameters from which the different windows can be compared is included, and an example demonstrates the use and value of windows to resolve closely spaced harmonic signals characterized by large differences in amplitude.
Abstract: This paper makes available a concise review of data windows and their affect on the detection of harmonic signals in the presence of broad-band noise, and in the presence of nearby strong harmonic interference. We also call attention to a number of common errors in the application of windows when used with the fast Fourier transform. This paper includes a comprehensive catalog of data windows along with their significant performance parameters from which the different windows can be compared. Finally, an example demonstrates the use and value of windows to resolve closely spaced harmonic signals characterized by large differences in amplitude.

7,130 citations

Journal ArticleDOI
01 Nov 1981
TL;DR: In this paper, a summary of many of the new techniques developed in the last two decades for spectrum analysis of discrete time series is presented, including classical periodogram, classical Blackman-Tukey, autoregressive (maximum entropy), moving average, autotegressive-moving average, maximum likelihood, Prony, and Pisarenko methods.
Abstract: A summary of many of the new techniques developed in the last two decades for spectrum analysis of discrete time series is presented in this tutorial. An examination of the underlying time series model assumed by each technique serves as the common basis for understanding the differences among the various spectrum analysis approaches. Techniques discussed include the classical periodogram, classical Blackman-Tukey, autoregressive (maximum entropy), moving average, autotegressive-moving average, maximum likelihood, Prony, and Pisarenko methods. A summary table in the text provides a concise overview for all methods, including key references and appropriate equations for computation of each spectral estimate.

2,941 citations

Book
01 Jan 1997
TL;DR: The Nature of Remote Sensing: Introduction, Sensor Characteristics and Spectral Stastistics, and Spatial Transforms: Introduction.
Abstract: The Nature of Remote Sensing: Introduction. Remote Sensing. Information Extraction from Remote-Sensing Images. Spectral Factors in Remote Sensing. Spectral Signatures. Remote-Sensing Systems. Optical Sensors. Temporal Characteristics. Image Display Systems. Data Systems. Summary. Exercises. References. Optical Radiation Models: Introduction. Visible to Short Wave Infrared Region. Solar Radiation. Radiation Components. Surface-Reflected. Unscattered Component. Surface-Reflected. Atmosphere-Scattered Component. Path-Scattered Component. Total At-Sensor. Solar Radiance. Image Examples in the Solar Region. Terrain Shading. Shadowing. Atmospheric Correction. Midwave to Thermal Infrared Region. Thermal Radiation. Radiation Components. Surface-Emitted Component. Surface-Reflected. Atmosphere-Emitted Component. Path-Emitted Component. Total At-Sensor. Emitted Radiance. Total Solar and Thermal Upwelling Radiance. Image Examples in the Thermal Region. Summary. Exercises. References. Sensor Models: Introduction. Overall Sensor Model. Resolution. The Instrument Response. Spatial Resolution. Spectral Resolution. Spectral Response. Spatial Response. Optical PSFopt. Image Motion PSFIM. Detector PSFdet. Electronics PSFel. Net PSFnet. Comparison of Sensor PSFs. PSF Summary for TM. Imaging System Simulation. Amplification. Sampling and Quantization. Simplified Sensor Model. Geometric Distortion. Orbit Models. Platform Attitude Models. Scanner Models. Earth Model. Line and Whiskbroom ScanGeometry. Pushbroom Scan Geometry. Topographic Distortion. Summary. Exercises. References. Data Models: Introduction. A Word on Notation. Univariate Image Statistics. Histogram. Normal Distribution. Cumulative Histogram. Statistical Parameters. Multivariate Image Statistics. Reduction to Univariate Statistics. Noise Models. Statistical Measures of Image Quality. Contrast. Modulation. Signal-to-Noise Ratio (SNR). Noise Equivalent Signal. Spatial Statistics. Visualization of Spatial Covariance. Covariance with Semivariogram. Separability and Anisotropy. Power Spectral Density. Co-occurrence Matrix. Fractal Geometry. Topographic and Sensor Effects. Topography and Spectral Statistics. Sensor Characteristics and Spectral Stastistics. Sensor Characteristics and Spectral Scattergrams. Summary. Exercises. References. Spectral Transforms: Introduction. Feature Space. Multispectral Ratios. Vegetation Indexes. Image Examples. Principal Components. Standardized Principal Components (SPC) Transform. Maximum Noise Fraction (MNF) Transform. Tasseled Cap Tranformation. Contrast Enhancement. Transformations Based on Global Statistics. Linear Transformations. Nonlinear Transformations. Normalization Stretch. Reference Stretch. Thresholding. Adaptive Transformation. Color Image Contrast Enhancement. Min-max Stretch. Normalization Stretch. Decorrelation Stretch. Color Spacer Transformations. Summary. Exercises. References. Spatial Transforms: Introduction. An Image Model for Spatial Filtering. Convolution Filters. Low Pass and High Pass Filters. High Boost Filters. Directional Filters. The Border Region. Characterization of Filtered Images. The Box Filter Algorithm. Cascaded Linear Filters. Statistical Filters. Gradient Filters. Fourier Synthesis. Discrete Fourier Transforms in 2-D. The Fourier Components. Filtering with the Fourier Transform. Transfer Functions. The Power Spectrum. Scale Space Transforms. Image Resolution Pyramids. Zero-Crossing Filters. Laplacian-of-Gaussian (LoG) Filters. Difference-of-Gaussians (DoG) Filters.Wavelet Transforms. Summary. Exercises. References. Correction and Calibration: Introduction. Noise Correction. Global Noise. Sigma Filter. Nagao-Matsuyama Filter. Local Noise. Periodic Noise. Distriping 359. Global,Linear Detector Matching. Nonlinear Detector Matching. Statistical Modification to Linear and Nonlinear Detector. Matching. Spatial Filtering Approaches. Radiometric Calibration. Sensor Calibration. Atmospheric Correction. Solar and Topographic Correction. Image Examples. Calibration and Normalization of Hyperspectral Imagery. AVIRIS Examples. Distortion Correction. Polynomial Distortion Models. Ground Control Points (GCPs). Coordinate Transformation. Map Projections. Resampling. Summary. Exercises References. Registration and Image Fusion: Introduction. What is Registration? Automated GCP Location. Area Correlation. Other Spatial Features. Orthrectification. Low-Resolution DEM. High-Resolution DEM. Hierarchical Warp Stereo. Multi-Image Fusion. Spatial Domain Fusion. High Frequency Modulation. Spectral Domain Fusion. Fusion Image Examples. Summary. Exercises. References. Thematic Classification: Introduction. The Importance of Image Scale. The Notion of Similarity. Hard Versus Soft Classification. Training the Classifier. Supervised Training. Unsupervised Training. K-Means Clustering Algorithm. Clustering Examples. Hybrid Supervised/Unsupervised Training. Non-Parametric Classification Algorithms. Level-Slice. Nearest-Mean. Artificial Neural Networks (ANNs). Back-Propagation Algorithm. Nonparametric Classification Examples. Parametric Classification Algorithms. Estimation of Model-Parameters. Discriminant Functions. The Normal Distribution Model. Relation to the Nearest-Mean Classifier. Supervised Classification Examples and Comparison to Nonparametric Classifiers. Segmentation. Region Growing. Region Labeling. Sub-Pixel Classification. The Linear Mixing Model. Unmixing Model. Hyperspectral Image Analysis. Visualization of the Image Cube. Feature Extraction. Image Residuals. Pre-Classification Processing and Feature Extraction. Classification Algorithms. Exercises. Error Analysis. Multitemporal Images. Summary. References. Index.

2,290 citations

Journal ArticleDOI
Alan G. Hawkes1
TL;DR: In this paper, the theoretical properties of a class of processes with particular reference to the point spectrum or corresponding covariance density functions are discussed and a particular result is a self-exciting process with the same second-order properties as a certain doubly stochastic process.
Abstract: SUMMARY In recent years methods of data analysis for point processes have received some attention, for example, by Cox & Lewis (1966) and Lewis (1964). In particular Bartlett (1963a,b) has introduced methods of analysis based on the point spectrum. Theoretical models are relatively sparse. In this paper the theoretical properties of a class of processes with particular reference to the point spectrum or corresponding covariance density functions are discussed. A particular result is a self-exciting process with the same second-order properties as a certain doubly stochastic process. These are not distinguishable by methods of data analysis based on these properties.

2,037 citations

Journal ArticleDOI
TL;DR: Estimation of the parameters of a single-frequency complex tone from a finite number of noisy discrete-time observations is discussed and appropriate Cramer-Rao bounds and maximum-likelihood estimation algorithms are derived.
Abstract: Estimation of the parameters of a single-frequency complex tone from a finite number of noisy discrete-time observations is discussed. The appropriate Cramer-Rao bounds and maximum-likelihood (MI.) estimation algorithms are derived. Some properties of the ML estimators are proved. The relationship of ML estimation to the discrete Fourier transform is exploited to obtain practical algorithms. The threshold effect of one algorithm is analyzed and compared to simulation results. Other simulation results verify other aspects of the analysis.

1,878 citations