scispace - formally typeset
Search or ask a question
Author

Peter Arlien-Søborg

Bio: Peter Arlien-Søborg is an academic researcher. The author has an hindex of 2, co-authored 2 publications receiving 1852 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of what the future may bring with respect to wildland fire and future options for research and management is presented in this paper. But, as stated in the review, "wildland fire is a global phenomenon, and a result of interactions between climate, fuels, and people".
Abstract: Wildland fire is a global phenomenon, and a result of interactions between climate–weather, fuels and people. Our climate is changing rapidly primarily through the release of greenhouse gases that may have profound and possibly unexpected impacts on global fire activity. The present paper reviews the current understanding of what the future may bring with respect to wildland fire and discusses future options for research and management. To date, research suggests a general increase in area burned and fire occurrence but there is a lot of spatial variability, with some areas of no change or even decreases in area burned and occurrence. Fire seasons are lengthening for temperate and boreal regions and this trend should continue in a warmer world. Future trends of fire severity and intensity are difficult to determine owing to the complex and non-linear interactions between weather, vegetation and people. Improved fire data are required along with continued global studies that dynamically include weather, vegetation, people, and other disturbances. Lastly, we need more research on the role of policy, practices and human behaviour because most of the global fire activity is directly attributable to people.

1,177 citations

Journal ArticleDOI
TL;DR: The stages of invasion known as the "invasion pathway" are used to identify 5 nonexclusive consequences of climate change for invasive species and the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management is emphasized.
Abstract: Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.

1,130 citations

Journal ArticleDOI
TL;DR: In this paper, a range of monitoring techniques are used to measure pollutant concentrations in urban street canyons, such as continuous monitoring, passive and active pre-concentration sampling, and grab sampling.

1,003 citations

Journal ArticleDOI
TL;DR: Using a sensory ecology approach, a mechanistic framework for predicting variation in behavioural responses to environmental change is presented, drawing from models of decision‐making processes and an understanding of the selective background against which they evolved.
Abstract: Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work.

922 citations