scispace - formally typeset
Search or ask a question
Author

Peter B. Adler

Bio: Peter B. Adler is an academic researcher from Utah State University. The author has contributed to research in topics: Population & Species richness. The author has an hindex of 53, co-authored 158 publications receiving 14542 citations. Previous affiliations of Peter B. Adler include University of California, Santa Barbara & Logan College of Chiropractic.


Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analysis of the plant invasions literature concludes that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.
Abstract: Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well-accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition-driven biotic resistance stem from classic ecological theory, Elton’s formulation of ecological resistance, and the general acceptance of the enemies-release hypothesis. We conducted a meta-analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.

1,311 citations

Journal ArticleDOI
TL;DR: It is suggested that the evidence used in many studies to assess environmental filtering is insufficient to distinguish filtering from the outcome of biotic interactions, and a simple framework for considering the role of the environment in shaping community membership is presented.
Abstract: Summary One of the most pervasive concepts in the study of community assembly is the metaphor of the environmental filter, which refers to abiotic factors that prevent the establishment or persistence of species in a particular location. The metaphor has its origins in the study of community change during succession and in plant community dynamics, although it has gained considerable attention recently as part of a surge of interest in functional trait and phylogenetic-based approaches to the study of communities. While the filtering metaphor has clear utility in some circumstances, it has been challenging to reconcile the environmental filtering concept with recent developments in ecological theory related to species coexistence. These advances suggest that the evidence used in many studies to assess environmental filtering is insufficient to distinguish filtering from the outcome of biotic interactions. We re-examine the environmental filtering metaphor from the perspective of coexistence theory. In an effort to move the discussion forward, we present a simple framework for considering the role of the environment in shaping community membership, review the literature to document the evidence typically used in environmental filtering studies and highlight research challenges to address in coming years. The current usage of the environmental filtering term in empirical studies likely overstates the role abiotic tolerances play in shaping community structure. We recommend that the term ‘environmental filtering’ only be used to refer to cases where the abiotic environment prevents establishment or persistence in the absence of biotic interactions, although only 15% of the studies in our review presented such evidence. Finally, we urge community ecologists to consider additional mechanisms aside from environmental filtering by which the abiotic environment can shape community pattern.

1,078 citations

Journal ArticleDOI
TL;DR: It is shown that experimental manipulations of the abiotic or biotic environment, assessments of trait-phylogeny-environment relationships, and investigations of frequency-dependent population growth all suggest strong influences of stabilizing niche differences and fitness differences on the outcome of plant community assembly.
Abstract: Although research on the role of competitive interactions during community assembly began decades ago, a recent revival of interest has led to new discoveries and research opportunities. Using contemporary coexistence theory that emphasizes stabilizing niche differences and relative fitness differences, we evaluate three empirical approaches for studying community assembly. We show that experimental manipulations of the abiotic or biotic environment, assessments of trait-phylogeny-environment relationships, and investigations of frequency-dependent population growth all suggest strong influences of stabilizing niche differences and fitness differences on the outcome of plant community assembly. Nonetheless, due to the limitations of these approaches applied in isolation, we still have a poor understanding of which niche axes and which traits determine the outcome of competition and community structure. Combining current approaches represents our best chance of achieving this goal, which is fundamental to conceptual ecology and to the management of plant communities under global change.

1,065 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality) for coexistence.
Abstract: Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence.

956 citations

Journal ArticleDOI
TL;DR: A cell-based simulation model is built that features two competing plant species, different grazing patterns, and different sources of vegetation pattern to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others.
Abstract: Grazing can alter the spatial heterogeneity of vegetation, influencing ecosystem processes and biodiversity. Our objective was to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others. The immediate effect of grazing on heterogeneity depends on the interaction between the spatial pattern of grazing and the pre-existing spatial pattern of vegetation. Depending on the scale of observation and on the factors that determine animal distribution, grazing patterns may be stronger or weaker than vegetation patterns, or may mirror the spatial structure of vegetation. For each possible interaction between these patterns, we make a prediction about resulting changes in the spatial heterogeneity of vegetation. Case studies from the literature support our predictions, although ecosystems characterized by strong plant-soil interactions present important exceptions. While the processes by which grazing causes increases in heterogeneity are clear, how grazing leads to decreases in heterogeneity is less so. To explore how grazing can consistently dampen the fine-scale spatial patterns of competing plant species, we built a cell-based simulation model that features two competing plant species, different grazing patterns, and different sources of vegetation pattern. Only the simulations that included neighborhood interactions as a source of vegetation pattern produced results consistent with the predictions we derived from the literature review.

784 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: In this article, the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, need a landscape perspective, which is difficult to be found in the literature.
Abstract: Understanding the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, needs a landscape perspective. Agriculture can contribute to the conservation of high-diversity systems, which may provide important ecosystem services such as pollination and biological control via complementarity and sampling effects. Land-use management is often focused on few species and local processes, but in dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance). Interacting species experience their surrounding landscape at different spatial scales, which influences trophic interactions. Structurally complex landscapes enhance local diversity in agroecosystems, which may compensate for local high-intensity management. Organisms with high-dispersal abilities appear to drive these biodiversity patterns and ecosystem services, because of their recolonization ability and larger resources experienced. Agri-environment schemes (incentives for farmers to benefit the environment) need to broaden their perspective and to take the different responses to schemes in simple (high impact) and complex (low impact) agricultural landscapes into account. In simple landscapes, local allocation of habitat is more important than in complex landscapes, which are in total at risk. However, little knowledge of the relative importance of local and landscape management for biodiversity and its relation to ecosystem services make reliable recommendations difficult.

3,460 citations

01 Jan 2005
TL;DR: In this article, the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, need a landscape perspective, which may compensate for local highintensity management.
Abstract: Understanding the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, needs a landscape perspective. Agriculture can contribute to the conservation of high-diversity systems, which may provide important ecosystem services such as pollination and biological control via complementarity and sampling effects. Land-use management is often focused on few species and local processes, but in dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance). Interacting species experience their surrounding landscape at different spatial scales, which influences trophic interactions. Structurally complex landscapes enhance local diversity in agroecosystems, which may compensate for local highintensity management. Organisms with high-dispersal abilities appear to drive these biodiversity patterns and ecosystem services, because of their recolonization ability and larger resources experienced. Agri-environment schemes (incentives for farmers to benefit the environment) need to broaden their perspective and to take the different responses to schemes in simple (high impact) and complex (low impact) agricultural landscapes into account. In simple landscapes, local allocation of habitat is more important than in complex landscapes, which are in total at risk. However, little knowledge of the relative importance of local and landscape management for biodiversity and its relation to ecosystem services make reliable recommendations difficult.

3,387 citations