scispace - formally typeset
Search or ask a question
Author

Peter Banzer

Bio: Peter Banzer is an academic researcher from Max Planck Society. The author has contributed to research in topics: Polarization (waves) & Light beam. The author has an hindex of 31, co-authored 149 publications receiving 3835 citations. Previous affiliations of Peter Banzer include University of Ottawa & University of Graz.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face, as well as the exciting prospects for the future that are yet to be realized.
Abstract: Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.

639 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on recent developments of optics with light carrying transverse spin, and also highlight new capabilities and future applications emerging from this young yet already advanced field of research.
Abstract: This Progress Article details the latest achievements and underlying principles of light carrying transverse spin.The capabilities and future applications of this young yet already advanced field are highlighted. Scientists have known for more than a century that light possesses both linear and angular momenta along the direction of propagation. However, only recent advances in optics have led to the notion of spinning electromagnetic fields capable of carrying angular momenta transverse to the direction of motion. Such fields enable numerous applications in nano-optics, biosensing and near-field microscopy, including three-dimensional control over atoms, molecules and nanostructures, and allowing for the realization of chiral nanophotonic interfaces and plasmonic devices. Here, we report on recent developments of optics with light carrying transverse spin. We present both the underlying principles and the latest achievements, and also highlight new capabilities and future applications emerging from this young yet already advanced field of research.

497 citations

Journal ArticleDOI
27 Feb 2015-Science
TL;DR: Using a recently developed method for the three-dimensional nanotomography of optical vector fields, this work fully reconstructs the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures.
Abstract: Mobius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one “side” - or, more technically, being “non-orientable” surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Mobius strips of optical polarization by tightly focusing the light beam emerging from a q -plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nano-tomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Mobius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nano-fabrication.

321 citations

Journal ArticleDOI
TL;DR: The longitudinal electric component of Belinfante's elusive spin momentum density is determined, a solenoidal field quantity often referred to as "virtual" in this work.
Abstract: We generate tightly focused optical vector beams whose electric fields spin around an axis transverse to the beams' propagation direction. We experimentally investigate these fields by exploiting the directional near-field interference of a dipolelike plasmonic field probe placed adjacent to a dielectric interface. This directionality depends on the transverse electric spin density of the excitation field. Near- to far-field conversion mediated by the dielectric interface enables us to detect the directionality of the emitted light in the far field and, therefore, to measure the transverse electric spin density with nanoscopic resolution. Finally, we determine the longitudinal electric component of Belinfante's elusive spin momentum density, a solenoidal field quantity often referred to as "virtual."

230 citations

Journal ArticleDOI
Thomas Bauer1, Sergej Orlov1, Ulf Peschel1, Peter Banzer1, Gerd Leuchs1 
TL;DR: In this paper, an easily implementable reconstruction scheme is demonstrated for determining the full vectorial amplitude and relative phase distributions of highly confined electromagnetic fields with subwavelength resolution from a single-scan measurement.
Abstract: An easily implementable reconstruction scheme is demonstrated for determining the full vectorial amplitude and relative phase distributions of highly confined electromagnetic fields with subwavelength resolution from a single-scan measurement. This scheme will help improve microscopy and nanoscopy techniques.

210 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

01 Jun 2005

3,154 citations

Journal ArticleDOI
01 Dec 1949-Nature
TL;DR: Wentzel and Jauch as discussed by the authors described the symmetrization of the energy momentum tensor according to the Belinfante Quantum Theory of Fields (BQF).
Abstract: To say that this is the best book on the quantum theory of fields is no praise, since to my knowledge it is the only book on this subject But it is a very good and most useful book The original was written in German and appeared in 1942 This is a translation with some minor changes A few remarks have been added, concerning meson theory and nuclear forces, also footnotes referring to modern work in this field, and finally an appendix on the symmetrization of the energy momentum tensor according to Belinfante Quantum Theory of Fields Prof Gregor Wentzel Translated from the German by Charlotte Houtermans and J M Jauch Pp ix + 224, (New York and London: Interscience Publishers, Inc, 1949) 36s

2,935 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations