scispace - formally typeset
Search or ask a question
Author

Peter Belser

Other affiliations: University of Amsterdam
Bio: Peter Belser is an academic researcher from University of Fribourg. The author has contributed to research in topics: Ruthenium & Bipyridine. The author has an hindex of 34, co-authored 79 publications receiving 7627 citations. Previous affiliations of Peter Belser include University of Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the role played by various factors, such as distance, geometry, electronic nature of the bridging ligand, which control the occurrence of intercomponent electronic energy and electron transfer in dinuclear systems are discussed.

300 citations

Journal ArticleDOI
B. Schlicke1, Peter Belser1, L. De Cola1, E. Sabbioni1, V. Balzani1 
TL;DR: In this article, the absorption spectrum of each dinuclear complex is essentially equal to the sum of the spectra of the component species, showing that intercomponent electronic interactions are weak.
Abstract: We have synthesized nine rodlike compounds of nanometric dimension with general formula [M(bpy)3-(ph)n-M‘(bpy)3]4+ (M = M‘ = Ru(II); M = M‘ = Os(II); M = Ru(II), M‘ = Os(II); bpy = 2,2‘-bipyridine; ph = 1,4-phenylene; n = 3, 5, 7; the central phenylene unit bears two alkyl chains for solubility reasons; the metal-to metal distance is 4.2 nm for the longest spacer). The absorption spectra and the luminescence properties (emission spectra, quantum yields, and excited-state lifetimes) of the nine dinuclear complexes have been investigated in acetonitrile solution at 293 K and in butyronitrile rigid matrix at 77 K. The results obtained have been compared with those found for the separated chromophoric units ([Ru(bpy)3]2+, [Os(bpy)3]2+, and oligophenylene derivatives). The absorption spectrum of each dinuclear complex is essentially equal to the sum of the spectra of the component species, showing that intercomponent electronic interactions are weak. In the homodinuclear compounds, the strong fluorescence of t...

229 citations

Journal ArticleDOI
TL;DR: Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)3 units attached via a phenylene linker to the thiophene rings.
Abstract: Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)3 units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy 1MLCT state followed by intersystem crossing to emitting 3MLCT states, photoreactive 3IL states are populated by an efficient energy-transfer process. The involvement of these 3IL states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest 1IL state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The ...

213 citations

Journal ArticleDOI
TL;DR: The photophysical and electron transfer properties of the lowest excited state of nine ruthenium (polypyridine) complexes have been characterized in this article, where the results show that the Ru (bpy)2(DMCH)2+ complex is expected to be a more efficient mediator than Ru(bpy)-2+3 in the water splitting reaction by solar energy.
Abstract: The photophysical and electron transfer properties of the lowest excited state of nine ruthenium (polypyridine) complexes have been characterized. The complexes studied are Ru (bpy)3-n (LL)2+n, where n varies from 0 to 3, and LL is 4, 4′-di-t-butyl-2,2′-bipyridine (DTB-bpy), 3, 3′-dimethyl-2, 2′-bipyridine (DM-bpy), or a 2, 2′-diquinolyl derivative (DMCH). The results obtained show that the Ru (bpy)2(DMCH)2+ complex is expected to be a more efficient mediator than Ru (bpy)2+3 in the water-splitting reaction by solar energy.

167 citations


Cited by
More filters
Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A consistent temperature-related shift is revealed in species ranging from molluscs to mammals and from grasses to trees, suggesting that a significant impact of global warming is already discernible in animal and plant populations.
Abstract: Over the past 100 years, the global average temperature has increased by approximately 0.6 °C and is projected to continue to rise at a rapid rate1. Although species have responded to climatic changes throughout their evolutionary history2, a primary concern for wild species and their ecosystems is this rapid rate of change3. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or ‘fingerprint’, in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.

4,532 citations