scispace - formally typeset
Search or ask a question
Author

Peter Berglund

Bio: Peter Berglund is an academic researcher from University of New Hampshire. The author has contributed to research in topics: Moduli & String (physics). The author has an hindex of 2, co-authored 2 publications receiving 1190 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory, and they showed that there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume.
Abstract: We study the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory. Under general circumstances there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume. Both this and its de Sitter uplift are tachyon-free, thereby fixing all K?hler and complex structure moduli. Also, for the class of vacua described in this paper, the gravitino mass is independent of the flux discretuum, whereas the ratio of the string scale to the 4d Planck scale is hierarchically small but flux dependent. The inclusion of ?' corrections plays a crucial role in the structure of the potential. We illustrate these ideas through explicit computations for a particular Calabi-Yau manifold.

1,232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory, and they showed that there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume.
Abstract: We study the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory. Under general circumstances there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume. Both this and its de Sitter uplift are tachyon-free, thereby fixing all Kahler and complex structure moduli, which has been difficult to achieve in the KKLT scenario. Also, for the class of vacua described in this paper, the gravitino mass is independent of the flux discretuum, whereas the ratio of the string scale to the 4d Planck scale is hierarchically small but flux dependent. The inclusion of alpha' corrections plays a crucial role in the structure of the potential. We illustrate these ideas through explicit computations for a particular Calabi-Yau manifold.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a Theta vacua of gauge theories is proposed for cosmologists. But the authors do not consider the cosmological perturbation theory of axions in string theory.
Abstract: 1 Introduction 2 Models: the QCD axion; the strong CP problem; PQWW, KSVZ, DFSZ; anomalies, instantons and the potential; couplings; axions in string theory 3 Production and IC's: SSB and non-perturbative physics; the axion field during inflation and PQ SSB; cosmological populations - decay of parent, topological defects, thermal production, vacuum realignment 4 The Cosmological Field: action; background evolution; misalignment for QCD axion and ALPs; cosmological perturbation theory - ic's, early time treatment, axion sound speed and Jeans scale, transfer functions and WDM; the Schrodinger picture; simualting axions; BEC 5 CMB and LSS: Primary anisotropies; matter power; combined constraints; Isocurvature and inflation 6 Galaxy Formation; halo mass function; high-z and the EOR; density profiles; the CDM small-scale crises 7 Accelerated expansion: the cc problem; axion inflation (natural and monodromy) 8 Gravitational interactions with black holes and pulsars 9 Non-gravitational interactions: stellar astrophysics; LSW; vacuum birefringence; axion forces; direct detection with ADMX and CASPEr; Axion decays; dark radiation; astrophysical magnetic fields; cosmological birefringence 10 Conclusions A Theta vacua of gauge theories B EFT for cosmologists C Friedmann equations D Cosmological fluids E Bayes Theorem and priors F Degeneracies and sampling G Sheth-Tormen HMF

1,282 citations

Journal ArticleDOI
TL;DR: In this article, the axion quintessence can be explained by the potential energy of axions that have not yet relaxed to their minima in string compactifications, and axion potential can naturally fall close to the observed value of cosmological constant.
Abstract: String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.

1,189 citations

Journal ArticleDOI
TL;DR: In this paper, a pedagogical overview of flux compactifications in string theory is presented, from the basic ideas to the most recent developments, focusing on closed-string fluxes in type-II theories.

1,085 citations

Journal ArticleDOI
TL;DR: In this article, a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions is proposed, compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces.
Abstract: Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensor to scalar ratio $r\ensuremath{\approx}0.07$ accessible to upcoming cosmic microwave background observations.

1,007 citations

Journal ArticleDOI
TL;DR: In this paper, a review article provides a pedagogical introduction to various classes of chiral string compactifications to four dimensions with D-branes and fluxes with the main concern being to provide all necessary technical tools to explicitly construct four-dimensional orientifold vacua, with the final aim to come as close as possible to the supersymmetric standard model.

1,004 citations