scispace - formally typeset
Search or ask a question
Author

Peter C. Burger

Bio: Peter C. Burger is an academic researcher from Harvard University. The author has contributed to research in topics: Glioma & Anaplastic astrocytoma. The author has an hindex of 64, co-authored 142 publications receiving 35714 citations. Previous affiliations of Peter C. Burger include University of North Carolina at Chapel Hill & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: De novo methylation of the 5′ CpG island of p16 was found in approximately 20% of different primary neoplasms, but not in normal tissues, potentially representing a common pathway of tumour suppressor gene inactivation in human cancers.
Abstract: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers

1,977 citations

Journal ArticleDOI
TL;DR: The new World Health Organization (WHO) classification of nervous system tumors, published in 2000, emerged from a 1999 international consensus conference of neuropathologists, and new entities include chordoid glioma of the third ventricle, cerebellar liponeurocytoma, atypical teratoid/rhabdoid tumor, and perineurioma.
Abstract: The new World Health Organization (WHO) classification of nervous system tumors, published in 2000, emerged from a 1999 international consensus conference of neuropathologists. New entities include chordoid glioma of the third ventricle, cerebellar liponeurocytoma, atypical teratoid/rhabdoid tumor, and perineurioma. Several histological variants were added, including tanycytic ependymoma, large cell medulloblastoma, and rhabdoid meningioma. The WHO grading scheme was updated and, for meningiomas, extensively revised. In recognition of the emerging role of molecular diagnostic approaches to tumor classification, genetic profiles have been emphasized, as in the distinct subtypes of glioblastoma and the already clinically useful 1p and 19q markers for oligodendroglioma and 22q/INI1 for atypical teratoid/rhabdoid tumors. In accord with the new WHO Blue Book series, the actual classification is accompanied by extensive descriptions and illustrations of clinicopathological characteristics of each tumor type, including molecular genetic features, predictive factors, and separate chapters on inherited tumor syndromes. The 2000 WHO classification of nervous system tumors aims at being used and implemented by the neuro-oncology and biomedical research communities worldwide.

1,680 citations

Journal ArticleDOI
TL;DR: The new edition of the World Health Organization (WHO) book on ‘Histological Typing of Tumours of the Central Nervous System’ reflects the progress in brain tumour classification which has been achieved since publication of the first edition in 1979.
Abstract: The new edition of the World Health Organization (WHO) book on 'Histological Typing of Tumours of the Central Nervous System' reflects the progress in brain tumour classification which has been achieved since publication of the first edition in 1979. Several new tumour entities have been added, including the pleomorphic xanthoastrocytoma, central neurocytoma, the infantile desmoplastic astrocytoma/ganglioglioma, and the dysembryoplastic neuroepithelial tumour. The list of histological variants has also been expanded. In line with recent morphological and molecular data on glioma progression, the glioblastoma is now grouped together with astrocytic tumours. The classification of childhood tumours has been largely retained, the diagnosis primitive neuroectodermal tumour (PNET) only being recommended as a generic term for cerebellar medulloblastomas and neoplasms that are histologically indistinguishable from medulloblastoma but located in the CNS at sites other than the cerebellum. The WHO grading scheme was revised and adapted to new entities but its use, as before, remains optional.

1,532 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylation of theMGMT promoter did notHave such a benefit and were assigned to only radiotherapy.
Abstract: background Epigenetic silencing of the MGMT (O 6 -methylguanine–DNA methyltransferase) DNArepair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive alkylating agents. methods We tested the relationship between MGMT silencing in the tumor and the survival of patients who were enrolled in a randomized trial comparing radiotherapy alone with radiotherapy combined with concomitant and adjuvant treatment with temozolomide. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis. results The MGMT promoter was methylated in 45 percent of 206 assessable cases. Irrespective of treatment, MGMT promoter methylation was an independent favorable prognostic factor (P<0.001 by the log-rank test; hazard ratio, 0.45; 95 percent confidence interval, 0.32 to 0.61). Among patients whose tumor contained a methylated MGMT promoter, a survival benefit was observed in patients treated with temozolomide and radiotherapy; their median survival was 21.7 months (95 percent confidence interval, 17.4 to 30.4), as compared with 15.3 months (95 percent confidence interval, 13.0 to 20.9) among those who were assigned to only radiotherapy (P=0.007 by the log-rank test). In the absence of methylation of the MGMT promoter, there was a smaller and statistically insignificant difference in survival between the treatment groups. conclusions Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylated MGMT promoter did not have such a benefit.

6,018 citations