scispace - formally typeset
Search or ask a question
Author

Peter Christen

Bio: Peter Christen is an academic researcher from Australian National University. The author has contributed to research in topics: Record linkage & Matching (statistics). The author has an hindex of 40, co-authored 217 publications receiving 10649 citations. Previous affiliations of Peter Christen include University of Basel & Cooperative Research Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper surveys context awareness from an IoT perspective and addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT.
Abstract: As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.

2,542 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: In this article, the authors explore the concept of sensing as a service and how it fits with the Internet of Things (IoT) and identify the major open challenges and issues.
Abstract: The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues. The Internet of Things IoT has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today, infrastructure, platforms and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the IoT. Our objective is to investigate the concept of sensing as a service model in technological, economical and social perspectives and identify the major open challenges and issues. Copyright © 2013 John Wiley & Sons, Ltd.

756 citations

Posted Content
TL;DR: The objective is to investigate the concept of sensing as a service model in technological, economical and social perspectives and identify the major open challenges and issues.
Abstract: The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.

719 citations

Book
05 Jul 2012
TL;DR: Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database as mentioned in this paper.
Abstract: Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christens book is divided into three parts: Part I, Overview, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, Steps of the Data Matching Process, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, Further Topics, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.

713 citations

Journal ArticleDOI
TL;DR: A survey of 12 variations of 6 indexing techniques for record linkage and deduplication aimed at reducing the number of record pairs to be compared in the matching process by removing obvious nonmatching pairs, while at the same time maintaining high matching quality is presented.
Abstract: Record linkage is the process of matching records from several databases that refer to the same entities. When applied on a single database, this process is known as deduplication. Increasingly, matched data are becoming important in many application areas, because they can contain information that is not available otherwise, or that is too costly to acquire. Removing duplicate records in a single database is a crucial step in the data cleaning process, because duplicates can severely influence the outcomes of any subsequent data processing or data mining. With the increasing size of today's databases, the complexity of the matching process becomes one of the major challenges for record linkage and deduplication. In recent years, various indexing techniques have been developed for record linkage and deduplication. They are aimed at reducing the number of record pairs to be compared in the matching process by removing obvious nonmatching pairs, while at the same time maintaining high matching quality. This paper presents a survey of 12 variations of 6 indexing techniques. Their complexity is analyzed, and their performance and scalability is evaluated within an experimental framework using both synthetic and real data sets. No such detailed survey has so far been published.

663 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: This review paper summarizes the current state-of-the-art IoT in industries systematically and identifies research trends and challenges.
Abstract: Internet of Things (IoT) has provided a promising opportunity to build powerful industrial systems and applications by leveraging the growing ubiquity of radio-frequency identification (RFID), and wireless, mobile, and sensor devices. A wide range of industrial IoT applications have been developed and deployed in recent years. In an effort to understand the development of IoT in industries, this paper reviews the current research of IoT, key enabling technologies, major IoT applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art IoT in industries systematically.

4,145 citations