scispace - formally typeset
Search or ask a question
Author

Peter D. Ditlevsen

Bio: Peter D. Ditlevsen is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Glacial period & Ice core. The author has an hindex of 28, co-authored 106 publications receiving 3333 citations. Previous affiliations of Peter D. Ditlevsen include National Center for Atmospheric Research & Technical University of Denmark.


Papers
More filters
Journal ArticleDOI
Dorthe Dahl-Jensen, Mary R. Albert1, Ala Aldahan2, Nobuhiko Azuma3, David Balslev-Clausen4, Matthias Baumgartner, Ann-Marie Berggren2, Matthias Bigler, Tobias Binder5, Thomas Blunier, J. C. Bourgeois6, Edward J. Brook7, Susanne L Buchardt4, Christo Buizert, Emilie Capron, Jérôme A Chappellaz8, J. Chung9, Henrik Clausen4, Ivana Cvijanovic4, Siwan M. Davies10, Peter D. Ditlevsen4, Olivier Eicher11, Hubertus Fischer11, David A. Fisher6, L. G. Fleet12, Gideon Gfeller11, Vasileios Gkinis4, Sivaprasad Gogineni13, Kumiko Goto-Azuma14, Aslak Grinsted4, H. Gudlaugsdottir15, Myriam Guillevic4, S. B. Hansen4, Martin Hansson16, Motohiro Hirabayashi14, S. Hong, S. D. Hur9, Philippe Huybrechts17, Christine S. Hvidberg4, Yoshinori Iizuka16, Theo M. Jenk4, Sigfus J Johnsen4, Tyler R. Jones18, Jean Jouzel, Nanna B. Karlsson4, Kenji Kawamura14, Kaitlin M. Keegan1, E. Kettner4, Sepp Kipfstuhl19, Helle Astrid Kjær4, Michelle Koutnik20, Takayuki Kuramoto14, Peter Köhler19, Thomas Laepple19, Amaelle Landais, Peter L. Langen4, L. B. Larsen4, Daiana Leuenberger11, Markus Leuenberger, Carl Leuschen13, J. Li13, Vladimir Ya. Lipenkov21, Patricia Martinerie8, Olivia J. Maselli22, Valérie Masson-Delmotte, Joseph R. McConnell22, Heinrich Miller19, Olivia Mini11, A. Miyamoto23, M. Montagnat-Rentier24, Robert Mulvaney12, Raimund Muscheler, Anais Orsi25, John Paden13, Christian Panton4, Frank Pattyn26, Jean-Robert Petit8, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet24, Sune Olander Rasmussen4, Dominique Raynaud8, J. Ren, C. Reutenauer4, Catherine Ritz8, Thomas Röckmann, Jean Rosen7, Mauro Rubino, Oleg Rybak19, Denis Samyn2, Célia Sapart27, Adrian Schilt28, A. Schmidt4, Jakob Schwander11, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus25, Simon G. Sheldon4, Sebastian B. Simonsen4, Jesper Sjolte, Anne M. Solgaard4, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen29, Konrad Steffen30, J. P. Steffensen31, Daniel Steinhage19, Thomas F. Stocker, C. Stowasser18, A. S. Sturevik32, W. T. Sturges33, Arny E. Sveinbjörnsdottir29, A. Svensson30, Jean-Louis Tison31, J. Uetake34, Paul Vallelonga, R. S. W. van de Wal19, G. van der Wel11, Bruce H. Vaughn4, Bo Møllesøe Vinther2, E. Waddington35, Anna Wegner, Ilka Weikusat19, James W. C. White26, Frank Wilhelms19, Mai Winstrup4, Emmanuel Witrant, Eric W. Wolff11, C. Xiao, J. Zheng36 
24 Jan 2013-Nature
TL;DR: In this paper, the North Greenland Eemian Ice Drilling (NEEM) ice core was extracted from folded Greenland ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

546 citations

Dorthe Dahl-Jensen, Mary R. Albert, Ala Aldahan, Nobuhiko Azuma, David Balslev-Clausen, Matthias Baumgartner, Ann-Marie Berggren, Matthias Bigler, Tobias Binder, Thomas Blunier, J. C. Bourgeois, Edward J. Brook, Susanne L Buchardt, Christo Buizert, Emilie Capron, Jérôme A Chappellaz, J. Chung, Henrik Clausen, Ivana Cvijanovic, Siwan M. Davies, Peter D. Ditlevsen, Olivier Eicher, Hubertus Fischer, David A. Fisher, L. G. Fleet, Gideon Gfeller, Vasileios Gkinis, Sivaprasad Gogineni, Kumiko Goto-Azuma, Aslak Grinsted, H. Gudlaugsdottir, Myriam Guillevic, S. B. Hansen, Martin Hansson, Motohiro Hirabayashi, S. Hong, S. D. Hur, Philippe Huybrechts, Christine S. Hvidberg, Yoshinori Iizuka, Theo M. Jenk, Sigfus J Johnsen, Tyler R. Jones, Jean Jouzel, Nanna B. Karlsson, Kenji Kawamura, Kaitlin M. Keegan, E. Kettner, Sepp Kipfstuhl, Helle Astrid Kjær, Michelle Koutnik, Takayuki Kuramoto, Peter Köhler, Thomas Laepple, Amaelle Landais, Peter L. Langen, L. B. Larsen, Daiana Leuenberger, Markus Leuenberger, Carl Leuschen, J. Li, Vladimir Ya. Lipenkov, Patricia Martinerie, Olivia J. Maselli, Valérie Masson-Delmotte, Joseph R. McConnell, Heinrich Miller, Olivia Mini, A. Miyamoto, M. Montagnat-Rentier, Robert Mulvaney, Raimund Muscheler, Anais Orsi, John Paden, Christian Panton, Frank Pattyn, Jean-Robert Petit, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet, Sune Olander Rasmussen, Dominique Raynaud, J. Ren, C. Reutenauer, Catherine Ritz, Thomas Röckmann, Jean Rosen, Mauro Rubino, Oleg Rybak, Denis Samyn, Célia Sapart, Adrian Schilt, A. Schmidt, Jakob Schwander, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus, Simon G. Sheldon, Sebastian B. Simonsen, Jesper Sjolte, Anne M. Solgaard, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen, Konrad Steffen, J. P. Steffensen, Daniel Steinhage, Thomas F. Stocker, C. Stowasser, A. S. Sturevik, W. T. Sturges, Arny E. Sveinbjörnsdottir, A. Svensson, Jean-Louis Tison, J. Uetake, Paul Vallelonga, R. S. W. van de Wal, G. van der Wel, Bruce H. Vaughn, Bo Møllesøe Vinther, E. Waddington, Anna Wegner, Ilka Weikusat, James W. C. White, Frank Wilhelms, Mai Winstrup, Emmanuel Witrant, Eric W. Wolff, C. Xiao, J. Zheng, N Community 
01 Jan 2013
TL;DR: The new North Greenland Eemian Ice Drilling (‘NEEM’) ice core is presented and shows only a modest ice-sheet response to the strong warming in the early Eemians, which was probably driven by the decreasing summer insolation.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

451 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the fast time scale noise forcing the climate contains a component with an -stable distribution, and that abrupt climatic changes observed could be triggered by single extreme events.
Abstract: The last glacial period showed millennium scale climatic shifts between two dieren t stable climate states. The state of thermohaline ocean circulation probably gov- erns the climate, and the triggering mechanism for climate changes is random uctuation s of the atmospheric forcing on the ocean circulation. The high temporal resolution paleo- climatic data from ice-cores are consistent with this picture and a bi-stable climate pseudo-potential can be derived. It is found that the fast time scale noise forcing the climate contains a component with an -stable distribution. As a consequence the abrupt climatic changes observed could be triggered by single extreme events. These events are re- lated to ocean-atmosphere dynamics on annual or shorter time scales and could indicate a fundamental limitation in predictability of climate changes. Paleoclimatic records from ice-cores (Dansgaard et al.,

322 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution ice core record was used to identify the most pronounced changes observed, beside the glacial terminations, are the Dansgaard-Oeschger events, which strongly suggest that they are noise induced and thus have very limited predictability.
Abstract: [1] The causes for and possible predictions of rapid climate changes are poorly understood. The most pronounced changes observed, beside the glacial terminations, are the Dansgaard-Oeschger events. Present day general circulation climate models simulating glacial conditions are not capable of reproducing these rapid shifts. It is thus not known if they are due to bifurcations in the structural stability of the climate or if they are induced by stochastic fluctuations. By analyzing a high resolution ice core record we exclude the bifurcation scenario, which strongly suggests that they are noise induced and thus have very limited predictability.

213 citations

Journal ArticleDOI
TL;DR: Noise-induced jumping between metastable states in a potential depends on the structure of the noise, and jumping triggered by single extreme events contributes to the transition probability for an alpha-stable noise.
Abstract: Noise-induced jumping between metastable states in a potential depends on the structure of the noise. For an $\ensuremath{\alpha}$-stable noise, jumping triggered by single extreme events contributes to the transition probability. This is also called Levy flights and might be of importance in triggering sudden changes in geophysical flow and perhaps even climatic changes. The steady-state statistics is also influenced by the noise structure leading to a non-Gibbs distribution for an $\ensuremath{\alpha}$-stable noise.

156 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2012-Science
TL;DR: How previously isolated lines of work can be connected are reviewed, it is concluded that many critical transitions (such as escape from the poverty trap) can have positive outcomes, and how the new approaches to sensing fragility can help to detect both risks and opportunities for desired change.
Abstract: Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities for positive change. Our capacity to navigate such risks and opportunities can be boosted by combining emerging insights from two unconnected fields of research. One line of work is revealing fundamental architectural features that may cause ecological networks, financial markets, and other complex systems to have tipping points. Another field of research is uncovering generic empirical indicators of the proximity to such critical thresholds. Although sudden shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these emerging fields offers new approaches for anticipating critical transitions.

1,617 citations

Journal ArticleDOI
TL;DR: A copy of the Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?".
Abstract: A copy of Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?" It said: "… Young friends, you are certainly very concerned about this problem'. So, we would like you to meet the young women workers Meng Xiaoyu and Meng Yamei and the older cadre Miss Feng. They are the three leading characters in the short story ‘The Place of Love.’ Through the description of the love lives of these three, the story induces us to think deeply about two questions that merit further examination.

1,528 citations

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: A model coupling ice sheet and climate dynamics—including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs—is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios.
Abstract: Polar temperatures over the last several million years have, at times, been slightly warmer than today, yet global mean sea level has been 6-9 metres higher as recently as the Last Interglacial (130,000 to 115,000 years ago) and possibly higher during the Pliocene epoch (about three million years ago). In both cases the Antarctic ice sheet has been implicated as the primary contributor, hinting at its future vulnerability. Here we use a model coupling ice sheet and climate dynamics-including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs-that is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios. Antarctica has the potential to contribute more than a metre of sea-level rise by 2100 and more than 15 metres by 2500, if emissions continue unabated. In this case atmospheric warming will soon become the dominant driver of ice loss, but prolonged ocean warming will delay its recovery for thousands of years.

1,433 citations

Journal ArticleDOI
TL;DR: In this paper, a more detailed and extended version of the Greenland Stadials (GS) and Greenland Interstadials (GI) template for the whole of the last glacial period is presented, based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records.

1,417 citations