scispace - formally typeset
Search or ask a question
Author

Peter D. Haynes

Bio: Peter D. Haynes is an academic researcher from Imperial College London. The author has contributed to research in topics: Density functional theory & Basis set. The author has an hindex of 34, co-authored 100 publications receiving 3293 citations. Previous affiliations of Peter D. Haynes include Royal School of Mines & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: ONETEP is based on the reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap and has the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.
Abstract: We present ONETEP (order-N electronic total energy package), a density functional program for parallel computers whose computational cost scales linearly with the number of atoms and the number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap. We summarize the theoretical developments that enable the direct optimization of strictly localized quantities expressed in terms of a delocalized plane wave basis. These same localized quantities lead us to a physical way of dividing the computational effort among many processors to allow calculations to be performed efficiently on parallel supercomputers. We show with examples that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the time taken by ONETEP as a function of increasing number of atoms for a given number of processors is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that calculations with ONETEP have the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.

552 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a reformulation of the plane-wave pseudopotential method for insulators, which allows them to perform density-functional calculations by solving directly for nonorthogonal generalized Wannier functions.
Abstract: We present a reformulation of the plane-wave pseudopotential method for insulators. This new approach allows us to perform density-functional calculations by solving directly for “nonorthogonal generalized Wannier functions” rather than extended Bloch states. We outline the theory on which our method is based and present test calculations on a variety of systems. Comparison of our results with a standard plane-wave code shows that they are equivalent. Apart from the usual advantages of the plane-wave approach such as the applicability to any lattice symmetry and the high accuracy, our method also benefits from the localization properties of our functions in real space. The localization of all our functions greatly facilitates the future extension of our method to linear-scaling schemes or calculations of the electric polarization of crystalline insulators.

158 citations

Journal ArticleDOI
TL;DR: The recent improvements make calculations of tens of thousands of atoms feasible, even on fewer than 100 cores, and efficient scaling with number of atoms and number of cores is demonstrated up to 32,768 atoms on 64 cores.

135 citations

Journal ArticleDOI
TL;DR: This work presents a general preconditioning scheme to overcome an ill-conditioning related to the kinetic contribution to the total energy and which results in unacceptably slow convergence in linear-scaling density functional theory methods.
Abstract: Linear-scaling electronic structure methods are essential for calculations on large systems. Some of these approaches use a systematic basis set, the completeness of which may be tuned with an adjustable parameter similar to the energy cut-off of plane-wave techniques. The search for the electronic ground state in such methods suffers from an ill-conditioning which is related to the kinetic contribution to the total energy and which results in unacceptably slow convergence. We present a general preconditioning scheme to overcome this ill-conditioning and implement it within our own first-principles linear-scaling density functional theory method. The scheme may be applied in either real space or reciprocal space with equal success. The rate of convergence is improved by an order of magnitude and is found to be almost independent of the size of the basis.

132 citations

Journal ArticleDOI
TL;DR: 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane are used to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon Nanotubes (MWNT-NH(3)(+)).
Abstract: Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH(3)(+)). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH(3)(+) were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH(3)(+) were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.

112 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is shown how derivatives of the GPW energy functional, namely ionic forces and the Kohn–Sham matrix, can be computed in a consistent way and the computational cost is scaling linearly with the system size, even for condensed phase systems of just a few tens of atoms.

4,047 citations