scispace - formally typeset
Search or ask a question
Author

Peter D. R. Moeller

Bio: Peter D. R. Moeller is an academic researcher from National Ocean Service. The author has contributed to research in topics: Prymnesium parvum & Pfiesteria piscicida. The author has an hindex of 26, co-authored 53 publications receiving 2904 citations. Previous affiliations of Peter D. R. Moeller include Medical University of South Carolina & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
06 Jan 2000-Nature
TL;DR: Findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.
Abstract: Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin1 that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.

794 citations

Journal ArticleDOI
TL;DR: Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
Abstract: Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.

251 citations

Journal ArticleDOI
TL;DR: The authors' detection of P. australis frustules, via scanning electron microscopy, in both anchovy viscera and fecal material from sea lions exhibiting seizures provides corroborating evidence that this toxic algal species was involved in this unusual sea lion mortality event.
Abstract: The occurrence of an unusual mortality event involving California sea lions (Zalophus californianus) along the central California coast in May 1998 was recently reported. The potent neurotoxin domoic acid (DA), produced naturally by the diatom Pseudo-nitzschia australis and transmitted to the sea lions via planktivorous northern anchovies (Engraulis mordax), was identified as the probable causative agent. Details of DA analyses for anchovy tissues and sea lion feces are described. Domoic acid levels were estimated in anchovy samples by HPLC-UV, and in sea lion feces using the same method as well as a microplate receptor binding assay, with absolute confirmation by tandem mass spectrometry. The highest DA concentrations in anchovies occurred in the viscera (223 +/- 5 microg DA g(-1)), exceeding values in the body tissues by seven-fold and suggesting minimal bioaccumulation of DA in anchovy tissue. HPLC values for DA in sea lion fecal material (ranging from 152 to 136.5 microg DA g(-1)) required correction for interference from an unidentified compound. Inter-laboratory comparisons of HPLC data showed close quantitative agreement. Fecal DA activity determined using the receptor binding assay corresponded with HPLC values to within a factor of two. Finally, our detection of P. australis frustules, via scanning electron microscopy, in both anchovy viscera and fecal material from sea lions exhibiting seizures provides corroborating evidence that this toxic algal species was involved in this unusual sea lion mortality event.

214 citations

Journal ArticleDOI
TL;DR: The detection of toxin in urine, feces, and stomach contents of several sea lions represents the first proven occurrence of domoic acid transfer through the food chain to a marine mammal.
Abstract: Sea lion mortalities in central California during May and June 1998 were traced to their ingestion of sardines and anchovies that had accumulated the neurotoxin domoic acid. The detection of toxin in urine, feces, and stomach contents of several sea lions represents the first proven occurrence of domoic acid transfer through the food chain to a marine mammal. The pennate diatoms, Pseudo-nitzschia multiseriesand P. australis, were the dominant, toxinproducing phytoplankton constituting algal blooms near Monterey Bay, Half Moon Bay, and Oceano Dunes, areas where sea lions with neurological symptoms stranded. Toxic Pseudo-nitzschia were also found near Morro Bay, Point Conception, Point Arguello, and Santa Barbara, demonstrating that these species were widespread along the central California coast in June 1998. Measurements of domoic acid during three cruises in early June showed the )†

201 citations

Journal ArticleDOI
TL;DR: This study unequivocally establishes P. pseudodelicatissima as a source of DA in the northern Gulf of Mexico and suggests that rapidly growing, rather than nutrient-limited, popula- tions of this diatom should yield maximum net DA production rates and DA cell quotas.
Abstract: Domoic acid (DA), a potent neurotoxin, is synthesized by certain members of the ubiq- uitous marine diatom genus Pseudo-nitzschia. We recently detected elevated concentrations of DA in phytoplankton field samples from the northern Gulf of Mexico. In searching for a possible source of the toxin, we used a receptor-binding assay to detect DA activity in cultures of P. sp. cf. pseudodeli- catissima (Hasle) isolated from this region and confirmed its presence in 2 of 7 clones using liquid chromatography coupled with tandem mass-spectrometric detection (LC-MS/MS). Unlike other toxic Pseudo-nitzschia species examined previously (e.g., P. multiseries, P. australis), cellular levels and net production of DA in these clones were highest in the early exponential phase, while the population growth rate was high and cell concentration was low. There was a negative correlation between cel- lular DA and cell concentration. The maximum cellular DA activity in cultures was 36 fg DA equiv. cell -1 . No net toxin production was evident in the stationary phase, yet extracellular DA levels increased markedly during this period to as much as 88% of the total DA in the cultures. Interest- ingly, these 2 toxic clones were able to enlarge their cell size after the apical axes declined to 15 to 25 µm, and these larger cells had considerably higher levels of DA than the original small cells. This study unequivocally establishes P. sp. cf. pseudodelicatissima as a source of DA in the northern Gulf of Mexico. Moreover, our work suggests that rapidly growing, rather than nutrient-limited, popula- tions of this diatom should yield maximum net DA production rates and DA cell quotas. Thus, the presence of P. sp. cf. pseudodelicatissima cells, even at the low levels of early, rapidly growing bloom stages, can potentially lead to toxic events.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: The relationship between harmful algal blooms and eutrophication of coastal waters from human activities has been investigated in this paper, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae.
Abstract: Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients poten- tially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phos- phorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton pro- duction in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries re- sources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophyll a) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N:P or N:Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased un- derstanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/ abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over- enrichment on harmful algal species is clearly species specific.

2,500 citations

Journal ArticleDOI
TL;DR: In this article, a global assessment of the effects of inorganic nitrogen pollution in aquatic ecosystems is presented, with detailed multi-scale data, and three major environmental problems: (1) increasing the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) stimulating or enhancing the development, maintenance and proliferation of primary producers, leading to eutrophication of aquatic ecosystems; (3) reaching toxic levels that impair the ability of aquatic animals to survive, grow and reproduce.

1,753 citations

Journal ArticleDOI
TL;DR: The Effects of Harmful Algal Blooms on Aquatic Organisms: Vol. 10, No. 2, pp. 113-390 as mentioned in this paper was the first publication of this article.
Abstract: (2002). The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews in Fisheries Science: Vol. 10, No. 2, pp. 113-390.

1,242 citations