scispace - formally typeset
Search or ask a question
Author

Peter Dendooven

Bio: Peter Dendooven is an academic researcher from University of Groningen. The author has contributed to research in topics: Neutron & Decay scheme. The author has an hindex of 35, co-authored 253 publications receiving 4660 citations. Previous affiliations of Peter Dendooven include Ghent University & University of Jyväskylä.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel detector design with DOI correction is presented, in which a position-sensitive SiPM array is used to read out a monolithic scintillator, demonstrating excellent DOI correction.
Abstract: Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 × 4 SiPM array coupled to either the front or back surface of a 13.2 mm × 13.2 mm × 10 mm LYSO:Ce3+ crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an ~0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45°, demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF2 detector, equals 960 ps FWHM.

281 citations

Journal ArticleDOI
TL;DR: It is concluded that SiPM-based scintillation detectors can provide timing resolutions at least as good as detectors based on PMTs.
Abstract: The use of time-of-flight (TOF) information in positron emission tomography (PET) enables significant improvement in image noise properties and, therefore, lesion detection. Silicon photomultipliers (SiPMs) are solid-state photosensors that have several advantages over photomultiplier tubes (PMTs). SiPMs are small, essentially transparent to 511 keV gamma rays and insensitive to magnetic fields. This enables novel detector designs aimed at e.g. compactness, high resolution, depth-of-interaction (DOI) correction and MRI compatibility. The goal of the present work is to study the timing performance of SiPMs in combination with LaBr3:Ce(5%), a relatively new scintillator with promising characteristics for TOF-PET. Measurements were performed with two, bare, 3 mm × 3 mm × 5 mm LaBr3:Ce(5%) crystals, each coupled to a 3 mm × 3 mm SiPM. Using a 22Na point source placed at various positions in between the two detectors, a coincidence resolving time (CRT) of ~100 ps FWHM for 511 keV annihilation photon pairs was achieved, corresponding to a TOF positioning resolution of ~15 mm FWHM. At the same time, pulse height spectra with well-resolved full-energy peaks were obtained. To our knowledge this is the best CRT reported for SiPM-based scintillation detectors to date. It is concluded that SiPM-based scintillation detectors can provide timing resolutions at least as good as detectors based on PMTs.

222 citations

Journal ArticleDOI
13 Jan 2005-Nature
TL;DR: In this paper, the authors reported a measurement of the inverse process, where a C-12 nucleus decays to three alpha-particles, and calculated the triple-a rate for temperatures from 10(7) K to 10(10) K and found significant deviations from the standard rates, implying that the critical amounts of carbon that catalysed hydrogen burning in the first stars are produced twice as fast as previously believed.
Abstract: In the centres of stars where the temperature is high enough, three alpha-particles (helium nuclei) are able to combine to form C-12 because of a resonant reaction leading to a nuclear excited state(1). (Stars with masses greater than similar to0.5 times that of the Sun will at some point in their lives have a central temperature high enough for this reaction to proceed.) Although the reaction rate is of critical significance for determining elemental abundances in the Universe(1), and for determining the size of the iron core of a star just before it goes supernova(2), it has hitherto been insufficiently determined(2). Here we report a measurement of the inverse process, where a C-12 nucleus decays to three alpha-particles. We find a dominant resonance at an energy of similar to11 MeV, but do not confirm the presence of a resonance at 9.1 MeV (ref. 3). We show that interference between two resonances has important effects on our measured spectrum. Using these data, we calculate the triple-a rate for temperatures from 10(7) K to 10(10) K and find significant deviations from the standard rates(3). Our rate below similar to5 x 10(7) K is higher than the previous standard, implying that the critical amounts of carbon that catalysed hydrogen burning in the first stars are produced twice as fast as previously believed(4). At temperatures above 10(9) K, our rate is much less, which modifies predicted nucleosynthesis in supernovae(5,6).

213 citations

Journal ArticleDOI
TL;DR: This paper proposes a setup, based on clinical irradiation conditions, capable of determining proton range deviations within a few seconds of irradiation, thus allowing for a fast safety survey, and describes model calculations that very precisely reproduce the experimental results.
Abstract: Proton and ion beams open up new vistas for the curative treatment of tumors, but adequate technologies for monitoring the compliance of dose delivery with treatment plans in real time are still missing. Range assessment, meaning the monitoring of therapy-particle ranges in tissue during dose delivery (treatment), is a continuous challenge considered a key for tapping the full potential of particle therapies. In this context the paper introduces an unconventional concept of range assessment by prompt-gamma timing (PGT), which is based on an elementary physical effect not considered so far: therapy particles penetrating tissue move very fast, but still need a finite transit time?about 1?2?ns in case of protons with a 5?20?cm range?from entering the patient?s body until stopping in the target volume. The transit time increases with the particle range. This causes measurable effects in PGT spectra, usable for range verification. The concept was verified by proton irradiation experiments at the AGOR cyclotron, KVI-CART, University of Groningen. Based on the presented kinematical relations, we describe model calculations that very precisely reproduce the experimental results. As the clinical treatment conditions entail measurement constraints (e.g. limited treatment time), we propose a setup, based on clinical irradiation conditions, capable of determining proton range deviations within a few seconds of irradiation, thus allowing for a fast safety survey. Range variations of 2?mm are expected to be clearly detectable.

158 citations

Journal ArticleDOI
TL;DR: In this article, an extended model that is able to simulate the simultaneous discharge of multiple cells was introduced to predict SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier.
Abstract: In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Abstract: Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M ☉ star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

3,474 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an updated version of the AESOPUS code used to compute stellar evolutionary tracks in Padova, which is the result of a thorough revision of put physics, together with the inclusion of the pre-main sequence phase.
Abstract: We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major in put physics, together with the inclusion of the pre‐main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of prompt ly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other set s with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun’s metallicity Z≃ 0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.

3,392 citations

Journal ArticleDOI
TL;DR: In this work, extended sets of stellar evolutionary models for various initial chemical compositions are presented, while other set s with different metallicities and/or different distributions of heavy elements are being computed.
Abstract: We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major input physics, together with the inclusion of the pre-main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of promptly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other sets with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun's metallicity Z=0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.

3,175 citations

Journal ArticleDOI
TL;DR: In this paper, a set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way, is presented, and a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z ǫ = 0.014, spanning a wide mass range from 0.8 to 120 m ⊙.
Abstract: Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way.Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 M ⊙ . For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate υ ini /υ crit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models.Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during the red-supergiant stage, when the luminosity becomes supra-Eddington in some outer layers, help models above 15−20 M ⊙ to lose a significant part of their hydrogen envelope and evolve back into the blue part of the HR diagram. This result has interesting consequences for the blue to red supergiant ratio, the minimum mass for stars to become Wolf-Rayet stars, and the maximum initial mass of stars that explode as type II−P supernovae.

1,654 citations

Journal ArticleDOI
TL;DR: The Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project as discussed by the authors provides a set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art 1D stellar evolution package.
Abstract: This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 \leq \rm \log(Age)\;[yr] \leq 10.3$), masses ($0.1 \leq M/M_{\odot} \leq 300$), and metallicities ($-2.0 \leq \rm [Z/H] \leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 \leq \rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at this http URL

1,301 citations