scispace - formally typeset
Search or ask a question
Author

Peter Dürre

Bio: Peter Dürre is an academic researcher from University of Ulm. The author has contributed to research in topics: Clostridium acetobutylicum & Genome. The author has an hindex of 42, co-authored 112 publications receiving 6119 citations.


Papers
More filters
Journal ArticleDOI
Peter Dürre1
TL;DR: The best‐studied bacterium to perform a butanol fermentation is Clostridium acetobutylicum, and its genome has been sequenced, and the regulation of solvent formation is under intensive investigation, opening the possibility to engineer recombinant strains with superior biobutanol‐producing ability.
Abstract: Biofuels are an attractive means to prevent a further increase of carbon dioxide emissions. Currently, gasoline is blended with ethanol at various percentages. However, butanol has several advantages over ethanol, such as higher energy content, lower water absorption, better blending ability, and use in conventional combustion engines without modification. Like ethanol, it can be produced fermentatively or petrochemically. Current crude oil prices render the biotechnological process economic again. The best-studied bacterium to perform a butanol fermentation is Clostridium acetobutylicum. Its genome has been sequenced, and the regulation of solvent formation is under intensive investigation. This opens the possibility to engineer recombinant strains with superior biobutanol-producing ability.

905 citations

Journal ArticleDOI
TL;DR: In this article, the complete genome of Clostridium ljungdahlii was sequenced and the authors revealed a third mode of anaerobic homoacetogenic metabolism.
Abstract: Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO2/H2 and synthesis gas (CO/H2). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO2, thus combining industrial needs with sustained reduction of CO and CO2 in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.

602 citations

Journal ArticleDOI
30 Jul 2004-Science
TL;DR: The entire genome sequence of this Gram-positive bacterium encodes 2333 putative genes and revealed numerous gene products involved in degrading host molecules, including sialidase, neuraminidases, endoglycoceramidased, lipases, and pore-forming factors.
Abstract: Propionibacterium acnes is a major inhabitant of adult human skin, where it resides within sebaceous follicles, usually as a harmless commensal although it has been implicated in acne vulgaris formation. The entire genome sequence of this Gram-positive bacterium encodes 2333 putative genes and revealed numerous gene products involved in degrading host molecules, including sialidases, neuraminidases, endoglycoceramidases, lipases, and pore-forming factors. Surface-associated and other immunogenic factors have been identified, which might be involved in triggering acne inflammation and other P. acnes-associated diseases.

414 citations

Journal ArticleDOI
Peter Dürre1
TL;DR: A reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation.
Abstract: Clostridial acetone/butanol fermentation used to rank second only to ethanol fermentation by yeast in its scale of production and thus is one of the largest biotechnological processes known Its decline since about 1950 has been caused by increasing substrate costs and the availability of much cheaper feedstocks for chemical solvent synthesis by the petrochemical industry The so-called oil crisis in 1973 led to renewed interest in novel fermentation and product recovery technologies as well as in the metabolism and genetics of the bacterial species involved As a consequence, almost all of the enzymes leading to solvent formation are known, their genes have been sequenced (in fact, Clostridium acetobutylicum has been recently included in the microbial genome sequencing project), the regulatory mechanisms controlling solventogenesis have begun to emerge and recombinant DNA techniques have been developed for these clostridia to construct specific production strains In parallel, cheap agricultural-waste-based feedstocks have been exploited for their potential as novel substrates, continuous culture methods have been successfully established and new on-line product recovery technologies are now available, such as gas stripping, liquid/liquid extraction, and membrane-based methods In combination with these achievements, a reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation

406 citations

Journal ArticleDOI
Peter Dürre1
TL;DR: Clostridium acetobutylicum is an anaerobic, spore‐forming bacterium with the ability to ferment starch and sugars into solvents, used for industrial production of acetone and butanol until cheap crude oil rendered petrochemical synthesis more economically feasible.
Abstract: Clostridium acetobutylicum is an anaerobic, spore-forming bacterium with the ability to ferment starch and sugars into solvents. In the past, it has been used for industrial production of acetone and butanol, until cheap crude oil rendered petrochemical synthesis more economically feasible. Both economic (price of crude oil) and environmental aspects (carbon dioxide emissions) have caused the pendulum to swing back again. Molecular biology has allowed a detailed understanding of genes and enzymes, required for solventogenesis. Thus, construction of strains with improved fermentation ability is now possible. Advances in continuous culture technology and improved downstream processing also add to economic advantages of a new biotechnological process. Two major companies have already committed themselves to biobutanol production as a biofuel additive. Thus, butanol fermentation is on the rise again.

356 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Abstract: Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

6,350 citations

Journal ArticleDOI
TL;DR: A KO-Based Annotation System (KOBAS) is developed that can automatically annotate a set of sequences with KO terms and identify both the most frequent and the statistically significantly enriched pathways.
Abstract: Motivation: High-throughput technologies such as DNA sequencing and microarrays have created the need for automated annotation of large sets of genes, including whole genomes, and automated identification of pathways. Ontologies, such as the popular Gene Ontology (GO), provide a common controlled vocabulary for these types of automated analysis. Yet, while GO offers tremendous value, it also has certain limitations such as the lack of direct association with pathways. Results: We demonstrated the use of the KEGG Orthology (KO), part of the KEGG suite of resources, as an alternative controlled vocabulary for automated annotation and pathway identification. We developed a KO-Based Annotation System (KOBAS) that can automatically annotate a set of sequences with KO terms and identify both the most frequent and the statistically significantly enriched pathways. Results from both whole genome and microarray gene cluster annotations with KOBAS are comparable and complementary to known annotations. KOBAS is a freely available standalone Python program that can contribute significantly to genome annotation and microarray analysis. Availability: Supplementary data and the KOBAS system are available at http://genome.cbi.pku.edu.cn/download.html Contact: weilp@mail.cbi.pku.edu.cn

2,595 citations

Journal ArticleDOI
TL;DR: An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.
Abstract: The skin is the human body's largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate the skin microbiota, but the microbiota also functions in educating the immune system. The development of molecular methods to identify microorganisms has led to an emerging view of the resident skin bacteria as highly diverse and variable. An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.

2,279 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature available on the subject of liquid bio-fuels can be found in this article, which includes information based on the research conducted globally by scientists according to their local socio-cultural and economic situations.

1,948 citations