scispace - formally typeset
Search or ask a question
Author

Peter Erk

Other affiliations: University of Würzburg, Stanford University, BASF SE  ...read more
Bio: Peter Erk is an academic researcher from Bosch. The author has contributed to research in topics: Organic solar cell & Perylene. The author has an hindex of 37, co-authored 136 publications receiving 4836 citations. Previous affiliations of Peter Erk include University of Würzburg & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: The syntheses and comprehensive characterization of 14 organic semiconductors based on perylene bisimide (PBI) dyes that are equipped with up to four halogen substituent in the bay area of the perylene core and five different highly fluorinated imide substituents are described, making them suitable for a wide range of practical applications.
Abstract: The syntheses and comprehensive characterization of 14 organic semiconductors based on perylene bisimide (PBI) dyes that are equipped with up to four halogen substituents in the bay area of the perylene core and five different highly fluorinated imide substituents are described. The influence of the substituents on the LUMO level and the solid state packing of PBIs was examined by cyclic voltammetry and single crystal structure analyses of seven PBI derivatives, respectively. Top-contact/bottom-gate organic thin film transistor (OTFT) devices were constructed by vacuum deposition of these PBIs on SiO2 gate dielectrics that had been pretreated with n-octadecyl triethoxysilane in vapor phase (OTS-V) or solution phase (OTS-S). The electrical characterization of all devices was accomplished in a nitrogen atmosphere as well as in air, and the structural features of thin films were explored by grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM). Several of those PBIs that bear only hydr...

609 citations

Journal ArticleDOI
TL;DR: In this paper, two vacuum processed single heterojunction organic solar cells with complementary absorption are described and the construction and optimization of tandem solar cells based on the combination of these heterojunctions demonstrated.
Abstract: In this paper, two vacuum processed single heterojunction organic solar cells with complementary absorption are described and the construction and optimization of tandem solar cells based on the combination of these heterojunctions demonstrated. The red-absorbing heterojunction consists of C60 and a fluorinated zinc phthalocyanine derivative (F4-ZnPc) that leads to a 0.1–0.15 V higher open circuit voltage Voc than the commonly used ZnPc. The second heterojunction incorporates C60 and a dicyanovinyl-capped sexithiophene derivative (DCV6T) that mainly absorbs in the green. The combination of both heterojunctions into one tandem solar cell leads to an absorption over the whole visible range of the sun spectrum. Thickness variations of the transparent p-doped optical spacer between both subcells in the tandem solar cell is shown to lead to a significant change in short circuit current density jsc due to optical interference effects, whereas Voc and fill factor are hardly affected. The maximum efficiency η of about 5.6% is found for a spacer thickness of 150-165 nm. Based on the optimized 165nm thick spacer, effects of intensity and angle of illumination, and temperature on a tandem device are investigated. Variations in illumination intensity lead to a linear change in jsc over three orders of magnitude and a nearly constant η in the range of 30 to 310 mW cm−2. Despite the stacked heterojunctions, the performance of the tandem device is robust against different illumination angles: jsc and η closely follow a cosine behavior between 0° and 70°. Investigations of the temperature behavior of the tandem device show an increase in η of 0.016 percentage points per Kelvin between −20 °C and 25 °C followed by a plateau up to 50 °C. Finally, further optimization of the tandem stack results in a certified η of (6.07 ± 0.24)% on (1.9893 ± 0.0060)cm2 (Fraunhofer ISE), i.e., areas large enough to be of relevance for modules.

234 citations

Patent
09 Feb 2012
TL;DR: In this paper, a detector for optically detecting at least one object is proposed, which is based on a geometry of the illumination, in particular on a beam cross-section of illumination on the sensor area.
Abstract: A detector (110) for optically detecting at least one object (112) is proposed. The detector (110) comprises at least one optical sensor (114). The optical sensor (114) has at least one sensor region (116). The optical sensor (114) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (116). The sensor signal, given the same total power of the illumination, is dependent on a geometry of the illumination, in particular on a beam cross section of the illumination on the sensor area (118). The detector (110) furthermore has at least one evaluation device (122). The evaluation device (122) is designed to generate at least one item of geometrical information from the sensor signal, in particular at least one item of geometrical information about the illumination and/or the object (112).

230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Abstract: Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

7,018 citations

Journal ArticleDOI
TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Abstract: This critical review will be of interest to the experts in porous solids (including catalysis), but also solid state chemists and physicists. It presents the state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their ‘design’, aiming at reaching very large pores. Their dynamic properties and the possibility of predicting their structure are described. The large tunability of the pore size leads to unprecedented properties and applications. They concern adsorption of species, storage and delivery and the physical properties of the dense phases. (323 references)

5,187 citations

Journal ArticleDOI
TL;DR: In this paper, the development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), nonlinear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.
Abstract: The development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), non-linear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.

3,117 citations