scispace - formally typeset
Search or ask a question
Author

Peter F. Germann

Other affiliations: Lancaster University, University of Virginia, Ford Motor Company  ...read more
Bio: Peter F. Germann is an academic researcher from University of Bern. The author has contributed to research in topics: Infiltration (hydrology) & Soil water. The author has an hindex of 30, co-authored 82 publications receiving 5770 citations. Previous affiliations of Peter F. Germann include Lancaster University & University of Virginia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the importance of large continuous openings (macropores) on water flow in soils is discussed and the limitations of models that treat macropores and matrix porosity as separate flow domains are stressed.
Abstract: This paper reviews the importance of large continuous openings (macropores) on water flow in soils. The presence of macropores may lead to spatial concentrations of water flow through unsaturated soil that will not be described well by a Darcy approach to flow through porous media. This has important implications for the rapid movement of solutes and pollutants through soils. Difficulties in defining what constitutes a macropore and the limitations of current nomenclature are reviewed. The influence of macropores on infiltration and subsurface storm flow is discussed on the basis of both experimental evidence and theoretical studies. The limitations of models that treat macropores and matrix porosity as separate flow domains is stressed. Little-understood areas are discussed as promising lines for future research. In particular, there is a need for a coherent theory of flow through structured soils that would make the macropore domain concept redundant.

2,532 citations

Journal ArticleDOI
TL;DR: It is suggested that the topic has still not received the attention that its importance deserves, in part because of the ready availability of software packages rooted firmly in the Richards domain, albeit that there is convincing evidence that this may be predicated on the wrong experimental method for natural conditions.
Abstract: The original review of macropores and water flow in soils by Beven and Germann is now 30 years old and has become one of the most highly cited papers in hydrology. This paper attempts to review the progress in observations and theoretical reasoning about preferential soil water flows over the intervening period. It is suggested that the topic has still not received the attention that its importance deserves, in part because of the ready availability of software packages rooted firmly in the Richards domain, albeit that there is convincing evidence that this may be predicated on the wrong experimental method for natural conditions. There is still not an adequate physical theory linking all types of flow, and there are still not adequate observational techniques to support the scale dependent parameterizations that will be required at practical field and hillslope scales of application. Some thoughts on future needs to develop a more comprehensive representation of soil water flows are offered.

655 citations

Journal ArticleDOI
TL;DR: In this paper, a one-dimensional model of bulk flow in a combined micropore/macropore system is presented, which has been developed as a result of the experimental work described in Part I.
Abstract: Summary This paper presents a one-dimensional model of bulk flow in a combined micropore/macropore system, which has been developed as a result of the experimental work described in Part I. The problems posed by the presence of macropores to model development and validation are discussed and one exploratory model formulation is described. The results of several simulations are presented and used to demonstrate the effect of macropores on infiltration rates in soils of different hydraulic conductivity.

250 citations

Journal ArticleDOI
TL;DR: In this paper, a method is proposed by which the volume of the macropore system and its effect on the infiltration capacity can be estimated using a soil water potential concept, and two large and undisturbed soil samples were investigated, and the volumes of macropores were 0.01 and 0.045 of the sample volumes, respectively.
Abstract: Summary A method is proposed by which the volume of the macropore system and its effect on the infiltration capacity can be estimated using a soil water potential concept. The macropore systems of two large and undisturbed soil samples were investigated. The volumes of macropores were 0.01 and 0.045 of the sample volumes, respectively. When the samples were drained from full saturation to the point where it may be assumed that there was no more water in the macropore system, the hydraulic conductivity decreased by factors of 18 and 4.3 respectively.

250 citations

Journal ArticleDOI
TL;DR: In this paper, a two-domain flow model is applied to infiltrate into a block of undisturbed soil containing macropores, where the first domain is the soil matrix, in which water is subjected to capillarity, and infiltration is approached by Philip's sorptivity concept.
Abstract: Infiltration into soils with macropores is treated as two-domain flow The first domain is the soil matrix, in which water is subjected to capillarity, and infiltration is approached by Philip's sorptivity concept The second domain is the soil macropore system in which water moves only under gravity and flow is approached by kinematic wave theory A sink function with respect to flow in the macropore system accounts for water sorption by the soil matrix The two-domain flow model is then applied to infiltration into a block of undisturbed soil containing macropores

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the importance of large continuous openings (macropores) on water flow in soils is discussed and the limitations of models that treat macropores and matrix porosity as separate flow domains are stressed.
Abstract: This paper reviews the importance of large continuous openings (macropores) on water flow in soils. The presence of macropores may lead to spatial concentrations of water flow through unsaturated soil that will not be described well by a Darcy approach to flow through porous media. This has important implications for the rapid movement of solutes and pollutants through soils. Difficulties in defining what constitutes a macropore and the limitations of current nomenclature are reviewed. The influence of macropores on infiltration and subsurface storm flow is discussed on the basis of both experimental evidence and theoretical studies. The limitations of models that treat macropores and matrix porosity as separate flow domains is stressed. Little-understood areas are discussed as promising lines for future research. In particular, there is a need for a coherent theory of flow through structured soils that would make the macropore domain concept redundant.

2,532 citations

Journal ArticleDOI
TL;DR: In this article, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized.
Abstract: The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW–SW) as they affect recharge–discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facing this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW–SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

1,670 citations

01 Jan 1992
TL;DR: The RETC computer code as mentioned in this paper uses the parametric models of Brooks-Corey and van Genuchten to represent the soil water retention curve, and the theoretical pore-size distribution models of Mualem and Burdine to predict the unsaturated hydraulic conductivity function from observed water retention data.
Abstract: This report describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soils. The program uses the parametric models of Brooks-Corey and van Genuchten to represent the soil water retention curve, and the theoretical pore-size distribution models of Mualem and Burdine to predict the unsaturated hydraulic conductivity function from observed soil water retention data. The report gives a detailed discussion of the different analytical expressions used for quantifying the soil water retention and hydraulic conductivity functions. A brief review is also given of the nonlinear least-squares parameter optimization method used for estimating the unknown coefficients in the hydraulic models. Several examples are presented to illustrate a variety of program options. The program may be used to predict the hydraulic conductivity from observed soil water retention data assuming that one observed conductivity value (not necessarily at saturation) is available. The program also permits one to fit analytical functions simultaneously to observed water retention and hydraulic conductivity data. The report serves as both a user manual and reference document. Detailed information is given on the computer program along with instructions for data input preparation and sample input and output files. A listing of the source code is also provided.

1,553 citations

Journal ArticleDOI
TL;DR: A framework is provided for scaling and scale issues in hydrology and a more holistic perspective dealing with dimensional analysis and similarity concepts is addressed, which deals with complex processes in a much simpler fashion.
Abstract: A framework is provided for scaling and scale issues in hydrology. The first section gives some basic definitions. This is important as researchers do not seem to have agreed on the meaning of concepts such as scale or upscaling. ‘Process scale’, ‘observation scale’ and ‘modelling (working) scale’ require different definitions. The second section discusses heterogeneity and variability in catchments and touches on the implications of randomness and organization for scaling. The third section addresses the linkages across scales from a modelling point of view. It is argued that upscaling typically consists of two steps: distributing and aggregating. Conversely, downscaling involves disaggregation and singling out. Different approaches are discussed for linking state variables, parameters, inputs and conceptualizations across scales. This section also deals with distributed parameter models, which are one way of linking conceptualizations across scales. The fourth section addresses the linkages across scales from a more holistic perspective dealing with dimensional analysis and similarity concepts. The main difference to the modelling point of view is that dimensional analysis and similarity concepts deal with complex processes in a much simpler fashion. Examples of dimensional analysis, similarity analysis and functional normalization in catchment hydrology are given. This section also briefly discusses fractals, which are a popular tool for quantifying variability across scales. The fifth section focuses on one particular aspect of this holistic view, discussing stream network analysis. The paper concludes with identifying key issues and gives some directions for future research.

1,510 citations