scispace - formally typeset
Search or ask a question
Author

Peter Gill

Bio: Peter Gill is an academic researcher from Oslo University Hospital. The author has contributed to research in topics: Intracule & Density functional theory. The author has an hindex of 89, co-authored 502 publications receiving 35160 citations. Previous affiliations of Peter Gill include Carnegie Mellon University & Rutherford Appleton Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
Abstract: Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

2,527 citations

Journal ArticleDOI
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Abstract: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Moller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr_2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

2,396 citations

Journal ArticleDOI
TL;DR: The results of a systematic study of molecular properties by density functional theory (DFT) are presented and discussed in this article, where equilibrium geometries, dipole moments, harmonic vibrational frequencies, and atomization energies were calculated for a set of 32 small neutral molecules by six different local and gradient-corrected DFT methods, and also by the ab initio methods Hartree-Fock, second order Mo/ller-Plesset, and quadratic configuration interaction with single and double substitutions (QCISD).
Abstract: The results of a systematic study of molecular properties by density functional theory (DFT) are presented and discussed. Equilibrium geometries, dipole moments, harmonic vibrational frequencies, and atomization energies were calculated for a set of 32 small neutral molecules by six different local and gradient‐corrected DFT methods, and also by the ab initio methods Hartree–Fock, second‐order Mo/ller–Plesset, and quadratic configuration interaction with single and double substitutions (QCISD). The standard 6‐31G* basis set was used for orbital expansion, and self‐consistent Kohn–Sham orbitals were obtained by all DFT methods, without employing any auxiliary fitting techniques. Comparison with experimental results shows the density functional geometries and dipole moments to be generally no better than or inferior to those predicted by the conventional ab initio methods with this particular basis set. The density functional vibrational frequencies compare favorably with the ab initio results, while for at...

1,736 citations

Journal ArticleDOI
01 Dec 1985-Nature
TL;DR: It is shown that this technique can be used for forensic purposes; DNA of high relative molecular mass (Mr) can be isolated from 4-yr-old bloodstains and semen stains made on cotton cloth and digested to produce DNA fingerprints suitable for individual identification.
Abstract: Many highly polymorphic minisatellite loci can be detected simultaneously in the human genome by hybridization to probes consisting of tandem repeats of the 'core' sequence. The resulting DNA fingerprints produced by Southern blot hybridization are comprised of multiple hypervariable DNA fragments, show somatic and germline stability and are completely specific to an individual. We now show that this technique can be used for forensic purposes; DNA of high relative molecular mass (Mr) can be isolated from 4-yr-old bloodstains and semen stains made on cotton cloth and digested to produce DNA fingerprints suitable for individual identification. Further, sperm nuclei can be separated from vaginal cellular debris, obtained from semen-contaminated vaginal swabs, enabling positive identification of the male donor/suspect. It is envisaged that DNA fingerprinting will revolutionize forensic biology particularly with regard to the identification of rape suspects.

1,020 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of a hybrid of density functional theory and Hartree-Fock theory, the B-LYP/HF procedure, has been examined with a variety of basis sets.

836 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Abstract: Despite the remarkable thermochemical accuracy of Kohn–Sham density‐functional theories with gradient corrections for exchange‐correlation [see, for example, A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], we believe that further improvements are unlikely unless exact‐exchange information is considered. Arguments to support this view are presented, and a semiempirical exchange‐correlation functional containing local‐spin‐density, gradient, and exact‐exchange terms is tested on 56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 total atomic energies of first‐ and second‐row systems. This functional performs significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.

87,732 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: In this article, a new coupling of Hartree-Fock theory with local density functional theory was proposed to improve the predictive power of the Hartree−Fock model for molecular bonding, and the results of tests on atomization energies, ionization potentials, and proton affinities were reported.
Abstract: Previous attempts to combine Hartree–Fock theory with local density‐functional theory have been unsuccessful in applications to molecular bonding. We derive a new coupling of these two theories that maintains their simplicity and computational efficiency, and yet greatly improves their predictive power. Very encouraging results of tests on atomization energies, ionization potentials, and proton affinities are reported, and the potential for future development is discussed.

13,853 citations

Journal ArticleDOI
TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Abstract: Hybrid density functionals are very successful in describing a wide range of molecular properties accurately. In large molecules and solids, however, calculating the exact (Hartree–Fock) exchange is computationally expensive, especially for systems with metallic characteristics. In the present work, we develop a new hybrid density functional based on a screened Coulomb potential for the exchange interaction which circumvents this bottleneck. The results obtained for structural and thermodynamic properties of molecules are comparable in quality to the most widely used hybrid functionals. In addition, we present results of periodic boundary condition calculations for both semiconducting and metallic single wall carbon nanotubes. Using a screened Coulomb potential for Hartree–Fock exchange enables fast and accurate hybrid calculations, even of usually difficult metallic systems. The high accuracy of the new screened Coulomb potential hybrid, combined with its computational advantages, makes it widely applicable to large molecules and periodic systems.

13,446 citations