scispace - formally typeset
Search or ask a question
Author

Peter Heinstein

Other affiliations: University College West
Bio: Peter Heinstein is an academic researcher from Purdue University. The author has contributed to research in topics: Elicitor & Phytoalexin. The author has an hindex of 26, co-authored 55 publications receiving 3737 citations. Previous affiliations of Peter Heinstein include University College West.


Papers
More filters
Patent
02 Apr 1990
TL;DR: In this article, a method for enhancing transmembrane transport of exogenous molecules is provided for the efficient delivery of peptides, proteins, nucleic acids and other compounds capable of modifying cell function into plant, animal, yeast, and bacterial cells.
Abstract: A method is provided for enhancing transmembrane transport of exogenous molecules. The method comprises contacting a membrane of a living cell with a complex formed between said molecules and ligands selected from biotin, biotin analogs and other biotin receptor-binding ligands, and/or folic acid, folate analogs and other folate receptor-binding ligands to initiate receptor mediated transmembrane transport of the ligand complex. The method is used for the efficient delivery of peptides, proteins, nucleic acids and other compounds capable of modifying cell function into plant, animal, yeast, and bacterial cells.

715 citations

Journal ArticleDOI
TL;DR: The results suggest that H(2)O(2), implicated as a second messenger of hormone-stimulated metabolic changes in some animal cells, also plays an important role in inducing subsequent defense responses such as phytoalexin production.
Abstract: Stimulation of cultured plant cells with elicitors of the defense response leads to the rapid destruction of a variety of water-soluble compounds including indoleacetic acid and certain fluorescent dyes. This destructive activity, which is often vigorously manifested within 5 minutes of elicitor addition, is shown to derive from the rapid production of H2O2 and its use by extracellular peroxidases. Because of its speed of appearance, this oxidative burst may qualify as the first induced line of defense against invading pathogens. Since H2O2 has been implicated as a second messenger of hormone-stimulated metabolic changes in some animal cells, its possible role in transduction of the defense signal in plants was also examined. Not only did exogenous H2O2 alone stimulate phytoalexin production in the plant cell suspension, but inhibition of elicitor-stimulated phytoalexin production was observed upon addition of catalase and other inhibitors of the oxidative burst. Furthermore, for inhibition to occur, the presence of catalase was required during elicitor addition, since if introduction of the enzyme was delayed until 1 hour after addition of the elicitor, no inhibition resulted. These results suggest that H2O2 also plays an important role in inducing subsequent defense responses such as phytoalexin production.

692 citations

Journal ArticleDOI
TL;DR: The rapid release of H2O2 by elicited plant cells stimulated with a purified polygalacturonic acid (PGA) elicitor was investigated in suspension-cultured soybean cells and a model describing the possible role of the PGA-induced oxidative burst in the overall scheme of plant defense is proposed.
Abstract: The rapid release of H2O2 by elicited plant cells, recently termed the oxidative burst, was investigated in suspension-cultured soybean (Glycine max Merr. cv Kent) cells stimulated with a purified polygalacturonic acid (PGA) elicitor. Examination of the elicited cells by fluorescence microscopy revealed that virtually every living cell participates in the elicitor-induced H2O2 burst. Measurement of the kinetics of the response using a macroscopic fluorescence-based assay indicated that approximately 100 molecules of H2O2 are generated per PGA molecule added, achieving a cumulative H2O2 concentration of approximately 1.2 mmol L-1 of packed cells. At the height of the defense response, 3 x 10–14 mol of H2O2 cell-1 min-1 are produced, a value comparable to the rate of H2O2 production by myeloid cells of mammals. Variables affecting the rate and magnitude of the soybean oxidative burst were found to be mechanical stress, extracellular pH, and cell age. The PGA-induced oxidative burst was shown to undergo both homologous and heterologous desensitization, a characteristic of signal transduction pathways in animals. Homologous desensitization was obtained with PGA, and heterologous desensitization was observed with the G protein activator mastoparan, consistent with earlier observations showing that G proteins perform a regulatory function in this pathway. Finally, a model describing the possible role of the PGA-induced oxidative burst in the overall scheme of plant defense is proposed.

258 citations

Journal ArticleDOI
TL;DR: The fungal-elicited production of a (+)-delta-cadinene synthase is consistent with a role for this enzyme as the first committed step in the pathways leading to the related phytoalexins gossypol and lacinilene C in cotton.

215 citations

Journal ArticleDOI
TL;DR: It is hypothesize that phospholipase C activation might constitute one pathway by which elicitors trigger the soybean oxidative burst.

212 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations

Journal ArticleDOI
TL;DR: A conceptual model of the evolution of plant defense is concluded, in which plant physioligical trade-offs interact with the abiotic environment, competition and herbivory.
Abstract: Physiological and ecological constraints play key roles in the evolution of plant growth patterns, especially in relation to defenses against herbivores. Phenotypic and life history theories are unified within the growth-differentiation balance (GDB) framework, forming an integrated system of theories explaining and predicting patterns of plant defense and competitive interactions in ecological and evolutionary time. Plant activity at the cellular level can be classified as growth (cell division and enlargement) of differentiation (chemical and morphological changes leading to cell maturation and specialization). The GDB hypothesis of plant defense is premised upon a physiological trade-off between growth and differentiation processes. The trade-off between growth and defense exists because secondary metabolism and structural reinforcement are physiologically constrained in dividing and enlarging cells, and because they divert resources from the production of new leaf area. Hence the dilemma of plants: Th...

3,843 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils, which underlies the expression of disease-resistance mechanisms.
Abstract: Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils. The oxidants are not only direct protective agents, but H2O2 also functions as a substrate for oxidative cross-linking in the cell wall, as a threshold trigger for hypersensitive cell death, and as a diffusible signal for induction of cellular protectant genes in surrounding cells. Activation of the oxidative burst is a central component of a highly amplified and integrated signal system, also involving salicylic acid and perturbations of cytosolic Ca2+, which underlies the expression of disease-resistance mechanisms.

3,203 citations

Journal ArticleDOI
TL;DR: In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment.
Abstract: Since their isolation in the early 1990s, members of the Hedgehog family of intercellular signaling proteins have come to be recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates. In some contexts, Hedgehog signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens regulating cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hedgehog proteins raise many intriguing questions about their mode of operation. How do these proteins move between or across fields of cells? How are their activities modulated and transduced? What are their intracellular targets? In this article we review some well-established paradigms of Hedgehog function inDrosophila and vertebrate development and survey the current understanding of the synthesis, modification, and transduction of Hedgehog proteins. Embryological studies over much of the last century that relied primarily on the physical manipulation of cells within the developing embryo or fragments of the embryo in culture, provided many compelling examples for the primacy of cell–cell interactions in regulating invertebrate and vertebrate development. The subsequent identification of many of the signaling factors that mediate cellular communication has led to two general conclusions. First, although there are many important signals, most of these fall into a few large families of secreted peptide factors: theWnt (Wodarz and Nusse 1998), fibroblast growth factor (Szebenyi and Fallon 1999), TGFsuperfamily (Massague and Chen 2000), plateletderived growth factor (Betsholtz et al. 2001), ephrin (Bruckner and Klein 1998), and Hedgehog families. Second, parallel studies in invertebrate and vertebrate systems have shown that although the final outcome might look quite different (e.g., a fly vs. a mouse), there is a striking conservation in the deployment of members of the same signaling families to regulate development of these seemingly quite different organisms. This review focuses on one of the most intriguing examples of this phenomenon, that of the Hedgehog family. As with many of the advances in our understanding of the genetic regulation of animal development, hedgehog (hh) genes owe their discovery to the pioneering work of Nusslein-Volhard and Wieschaus (1980). In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles (spiky cuticular processes that decorate the anterior half of each body segment) and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment (see Fig. 1). The ensuing appearance of a continuous lawn of denticles projecting from the larval cuticle evidently suggested the spines of a hedgehog to the discoverers, hence the origin of the name of one of these genes. Other loci identified by mutants with this phenotype included armadillo, gooseberry, and wingless (wg). In contrast, animals mutant for the aptly named naked gene showed the converse phenotype, with denticle belts replaced by naked cuticle in every segment. On the basis of these mutant phenotypes, Nusslein-Volhard and Wieschaus (1980) proposed that these so-called segment-polarity genes regulate pattern within each of the segments of the larval body, individual genes acting within distinct subregions of the emerging segmental pattern. The first important breakthrough in unraveling how segment-polarity genes act came in the mid-1980s with the cloning of two members of the class, wingless and engrailed (en). Wg was shown to be the ortholog of the vertebrate proto-oncogene int1 (subsequently renamed Wnt1 and the founder member of the Wnt family of secreted peptide factors; Rijsewijk et al. 1987), whereas the sequence of en revealed that it encodes a homeodomaincontaining transcription factor (Fjose et al. 1985; Poole et al. 1985). Intriguingly, the two genes were found to be expressed in adjacent narrow stripes of cells in each segment (Martinez Arias et al. 1988). A close spatial relationship between Wnt1 and En expression domains was also reported in the primordial midbrain and hindbrain of the vertebrate embryo (McMahon et al. 1992). AnalyWe dedicate this review to the memory of our dear friend and colleague Rosa Beddington, whose encouragement led to our initial collaboration. 3Corresponding authors. E-MAIL p.w.ingham@sheffield.ac.uk; FAX 0114-222-288. E-MAIL amcmahon@biosun.harvard.edu; FAX (617) 496-3763. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ gad.938601.

2,919 citations

Journal ArticleDOI
18 Nov 1994-Cell
TL;DR: It is reported here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants.

2,740 citations