scispace - formally typeset
Search or ask a question
Author

Peter Herrlich

Bio: Peter Herrlich is an academic researcher from Leibniz Association. The author has contributed to research in topics: Transcription factor & Signal transduction. The author has an hindex of 85, co-authored 222 publications receiving 39902 citations. Previous affiliations of Peter Herrlich include Karlsruhe Institute of Technology.


Papers
More filters
Journal ArticleDOI
15 Dec 1995-Cell
TL;DR: This research presents a new probabilistic procedure called ‘spot-spot analysis’ to characterize the response of the immune system to the presence of E.coli.

6,818 citations

Journal ArticleDOI
19 Jun 1987-Cell
TL;DR: Results strongly suggest that AP-1 is at the receiving end of a complex pathway responsible for transmitting the effects of phorbol ester tumor promoters from the plasma membrane to the transcriptional machinery.

2,773 citations

Journal ArticleDOI
TL;DR: Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades and the CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes.
Abstract: Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes — not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.

2,171 citations

Journal ArticleDOI
15 Dec 1995-Cell
TL;DR: Miguel Beato,’ Peter Herrlich,t and Giinther Schlitz .

1,847 citations

Journal ArticleDOI
05 Apr 1991-Cell
TL;DR: Using a monoclonal antibody raised against a surface glycoprotein of the metastasizing rat pancreatic carcinoma cell line BSp73ASML, cDNA clones have been isolated that encode glycoproteins with partial homology to CD44, a presumed adhesion molecule.

1,703 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Abstract: Breast cancer is the most common malignancy in United States women, accounting for >40,000 deaths each year. These breast tumors are comprised of phenotypically diverse populations of breast cancer cells. Using a model in which human breast cancer cells were grown in immunocompromised mice, we found that only a minority of breast cancer cells had the ability to form new tumors. We were able to distinguish the tumorigenic (tumor initiating) from the nontumorigenic cancer cells based on cell surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD44+CD24−/lowLineage− in eight of nine patients. As few as 100 cells with this phenotype were able to form tumors in mice, whereas tens of thousands of cells with alternate phenotypes failed to form tumors. The tumorigenic subpopulation could be serially passaged: each time cells within this population generated new tumors containing additional CD44+CD24−/lowLineage− tumorigenic cells as well as the phenotypically diverse mixed populations of nontumorigenic cells present in the initial tumor. The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival. Furthermore, because these cells drive tumor development, strategies designed to target this population may lead to more effective therapies.

10,058 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
09 Nov 2000-Nature
TL;DR: Evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span is reviewed.
Abstract: Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.

8,665 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations