scispace - formally typeset
Search or ask a question
Author

Peter Heutink

Bio: Peter Heutink is an academic researcher from German Center for Neurodegenerative Diseases. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 92, co-authored 365 publications receiving 43441 citations. Previous affiliations of Peter Heutink include Erasmus University Rotterdam & Norwegian University of Science and Technology.


Papers
More filters
Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs1, J. Raphael Gibbs6, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten3, John C. van Swieten4, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz9, Sonja W. Scholz1, Sonja W. Scholz10, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez6, Dena G. Hernandez1, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen3, David Sondervan3, Harro Seelaar4, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein10, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink3, Stuart Pickering-Brown5, Huw R. Morris12, Huw R. Morris22, Huw R. Morris2, Pentti J. Tienari7, Bryan J. Traynor10, Bryan J. Traynor1 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
18 Jun 1998-Nature
TL;DR: In this paper, the authors sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon in
Abstract: Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17)(1-9), historically termed Pick's disease(10) Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics(1-8,12) Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q2111; the tau gene also lies within this region We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon in The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10 (ref 13) This causes more frequent usage of the 5' splice site and an increased proportion of tan transcripts that include exon 10 The increase in exon 10(+) messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17 (refs 12, 14)

3,366 citations

Journal ArticleDOI
10 Jan 2003-Science
TL;DR: It is shown that DJ-1 mutations are associated with PARK7, a monogenic form of human parkinsonism, and these findings indicate that loss ofDJ-1 function leads to neurodegeneration.
Abstract: The DJ-1 gene encodes a ubiquitous, highly conserved protein. Here, we show that DJ-1 mutations are associated with PARK7, a monogenic form of human parkinsonism. The function of the DJ-1 protein remains unknown, but evidence suggests its involvement in the oxidative stress response. Our findings indicate that loss of DJ-1 function leads to neurodegeneration. Elucidating the physiological role of DJ-1 protein may promote understanding of the mechanisms of brain neuronal maintenance and pathogenesis of Parkinson's disease.

2,666 citations

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: It is shown that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity.
Abstract: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

2,260 citations

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: For example, the authors mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body.
Abstract: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

1,715 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: Primer3’s current capabilities are described, including more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers.
Abstract: Polymerase chain reaction (PCR) is a basic molecular biology technique with a multiplicity of uses, including deoxyribonucleic acid cloning and sequencing, functional analysis of genes, diagnosis of diseases, genotyping and discovery of genetic variants. Reliable primer design is crucial for successful PCR, and for over a decade, the open-source Primer3 software has been widely used for primer design, often in high-throughput genomics applications. It has also been incorporated into numerous publicly available software packages and web services. During this period, we have greatly expanded Primer3’s functionality. In this article, we describe Primer3’s current capabilities, emphasizing recent improvements. The most notable enhancements incorporate more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers. Additional enhancements include more precise control of primer placement—a change motivated partly by opportunities to use whole-genome sequences to improve primer specificity. We also added features to increase ease of use, including the ability to save and re-use parameter settings and the ability to require that individual primers not be used in more than one primer pair. We have made the core code more modular and provided cleaner programming interfaces to further ease integration with other software. These improvements position Primer3 for continued use with genome-scale data in the decade ahead.

7,286 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
06 Oct 2006-Science
TL;DR: It is shown that TDP-43 is the major disease protein in both frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis.
Abstract: Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.

5,440 citations