scispace - formally typeset
Search or ask a question
Author

Peter Högberg

Bio: Peter Högberg is an academic researcher from Swedish University of Agricultural Sciences. The author has contributed to research in topics: Soil respiration & Ecosystem. The author has an hindex of 68, co-authored 144 publications receiving 21292 citations. Previous affiliations of Peter Högberg include Umeå University & Colorado State University.


Papers
More filters
Journal ArticleDOI
05 Nov 1999-Science
TL;DR: Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.
Abstract: At eight European field sites, the impact of loss of plant diversity on primary productivity was simulated by synthesizing grassland communities with different numbers of plant species. Results differed in detail at each location, but there was an overall log-linear reduction of average aboveground biomass with loss of species. For a given number of species, communities with fewer functional groups were less productive. These diversity effects occurred along with differences associated with species composition and geographic location. Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.

1,870 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: It is concluded that although natural processes can potentially slow the rate of increase in atmospheric CO2, there is no natural "savior" waiting to assimilate all the anthropogenically produced CO2 in the coming century.
Abstract: :Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the global carbon cycle. Our knowledge of the carbon cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that although natural processes can potentially slow the rate of increase in atmospheric CO 2, there is no natural “savior” waiting to assimilate all the anthropogenically produced CO 2 in the coming century. Our knowledge is insufficient to describe the interactions between the components of the Earth system and the relationship between the carbon cycle and other biogeochemical and climatological processes. Overcoming this limitation requires a systems approach.

1,839 citations

Journal ArticleDOI
14 Jun 2001-Nature
TL;DR: Girdling reduced soil respiration within 1–2 months by about 54% relative to respiration on ungirdled control plots, and that decreases of up to 37% were detected within 5 days, which clearly show that the flux of current assimilates to roots is a key driver of soil resppiration.
Abstract: The respiratory activities of plant roots, of their mycorrhizal fungi and of the free-living microbial heterotrophs (decomposers) in soils are significant components of the global carbon balance, but their relative contributions remain uncertain. To separate mycorrhizal root respiration from heterotrophic respiration in aboreal pine forest, we conducted a large-scale tree-girdling experiment, comprising 9 plots each containing about 120 trees. Tree-girdling involves stripping the stem bark to the depth of the current xylem at breast height terminating the supply of current photosynthates to roots and their mycorrhizal fungi without physically disturbing the delicate root-microbe-soil system. Here we report that girdling reduced soil respiration within 1-2 months by about 54% relative to respiration on ungirdled control plots, and that decreases of up to 37% were detected within 5 days. These values clearly show that the flux of current assimilates to roots is a key driver of soil respiration; they are conservative estimates of root respiration, however, because girdling increased the use of starch reserves in the roots. Our results indicate that models of soil respiration should incorporate measures of photosynthesis and of seasonal patterns of photosynthate allocation to roots.

1,794 citations

Journal ArticleDOI
TL;DR: Measurements of δ15 N might offer the advantage of giving insights into the N cycle without disturbing the system by adding 15 N tracer, as well as giving information on N source effects, which can give insights into N cycle rates.
Abstract: Equilibrium and kinetic isotope fractionations during incomplete reactions result in minute differences in the ratio between the two stable N isotopes, 15N and 14N, in various N pools. In ecosystems such variations (usually expressed in per mil [δ15N] deviations from the standard atmospheric N2) depend on isotopic signatures of inputs and outputs, the input–output balance, N transformations and their specific isotope effects, and compartmentation of N within the system. Products along a sequence of reactions, e.g. the N mineralization–N uptake pathway, should, if fractionation factors were equal for the different reactions, become progressively depleted. However, fractionation factors vary. For example, because nitrification discriminates against 15N in the substrate more than does N mineralization, NH4+ can become isotopically heavier than the organic N from which it is derived.Levels of isotopic enrichment depend dynamically on the stoichiometry of reactions, as well as on specific abiotic and biotic conditions. Thus, the δ15N of a specific N pool is not a constant, and δ15N of a N compound added to the system is not a conservative, unchanging tracer. This fact, together with analytical problems of measuring δ15N in small and dynamic pools of N in the soil–plant system, and the complexity of the N cycle itself (for instance the abundance of reversible reactions), limit the possibilities of making inferences based on observations of 15N abundance in one or a few pools of N in a system. Nevertheless, measurements of δ15N might offer the advantage of giving insights into the N cycle without disturbing the system by adding 15N tracer.Such attempts require, however, that the complex factors affecting δ15N in plants be taken into account, viz. (i) the source(s) of N (soil, precipitation, NOx, NH3, N2-fixation), (ii) the depth(s) in soil from which N is taken up, (iii) the form(s) of soil-N used (organic N, NH4+, NO3−), (iv) influences of mycorrhizal symbioses and fractionations during and after N uptake by plants, and (v) interactions between these factors and plant phenology. Because of this complexity, data on δ15N can only be used alone when certain requirements are met, e.g. when a clearly discrete N source in terms of amount and isotopic signature is studied. For example, it is recommended that N in non-N2-fixing species should differ more than 5‰ from N derived by N2-fixation, and that several non-N2-fixing references are used, when data on δ15N are used to estimate N2-fixation in poorly described ecosystems.As well as giving information on N source effects, δ15N can give insights into N cycle rates. For example, high levels of N deposition onto previously N-limited systems leads to increased nitrification, which produces 15N-enriched NH4+ and 15N-depleted NO3−. As many forest plants prefer NH4+ they become enriched in 15N in such circumstances. This change in plant δ15N will subsequently also occur in the soil surface horizon after litter-fall, and might be a useful indicator of N saturation, especially since there is usually an increase in δ15N with depth in soils of N-limited forests.Generally, interpretation of 15N measurements requires additional independent data and modelling, and benefits from a controlled experimental setting. Modelling will be greatly assisted by the development of methods to measure the δ15N of small dynamic pools of N in soils. Direct comparisons with parallel low tracer level 15N studies will be necessary to further develop the interpretation of variations in δ15N in soil–plant systems. Another promising approach is to study ratios of 15N[ratio ]14N together with other pairs of stable isotopes, e.g. 13C[ratio ]12C or 18O[ratio ]16O, in the same ion or molecules. This approach can help to tackle the challenge of distinguishing isotopic source effects from fractionations within the system studied.

1,518 citations

Journal ArticleDOI
30 Apr 1998-Nature
TL;DR: The data indicate that organic nitrogen is important for these different plants, even when they are competing with each other and with non-symbiotic microorganisms, which has major implications for the understanding of the effects of nitrogen deposition, global warming and intensified forestry.
Abstract: Plant growth in the boreal forest, the largest terrestrial biome, is generally limited by the availability of nitrogen. The presumed cause of this limitation is slow mineralization of soil organic nitrogen1,2. Here we demonstrate, to our knowledge for the first time, the uptake of organic nitrogen in the field by the trees Pinus sylvestris and Picea abies, the dwarf shrub Vaccinium myrtillus and the grass Deschampsia flexuosa. These results show that these plants, irrespective of their different types of root–fungal associations (mycorrhiza), bypass nitrogen mineralization. A trace of the amino acid glycine, labelled with the stable isotopes 13C and 15N, was injected into the organic (mor) layer of an old successional boreal coniferous forest. Ratios of 13C:15N in the roots showed that at least 91, 64 and 42% of the nitrogen from the absorbed glycine was taken up in intact glycine by the dwarf shrub, the grass and the trees, respectively. Rates of glycine uptake were similar to those of 15N-ammonium. Our data indicate that organic nitrogen is important for these different plants, even when they are competing with each other and with non-symbiotic microorganisms. This has major implications for our understanding of the effects of nitrogen deposition, global warming and intensified forestry.

913 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
01 Jul 2004-Ecology
TL;DR: This work has developed a quantitative theory for how metabolic rate varies with body size and temperature, and predicts how metabolic theory predicts how this rate controls ecological processes at all levels of organization from individuals to the biosphere.
Abstract: Metabolism provides a basis for using first principles of physics, chemistry, and biology to link the biology of individual organisms to the ecology of populations, communities, and ecosystems. Metabolic rate, the rate at which organisms take up, transform, and expend energy and materials, is the most fundamental biological rate. We have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment and resource allocation to survival, growth, and reproduction, controls ecological processes at all levels of organization from individuals to the biosphere. Examples include: (1) life history attributes, including devel- opment rate, mortality rate, age at maturity, life span, and population growth rate; (2) population interactions, including carrying capacity, rates of competition and predation, and patterns of species diversity; and (3) ecosystem processes, including rates of biomass production and respiration and patterns of trophic dynamics. Data compiled from the ecological literature strongly support the theoretical predictions. Even- tually, metabolic theory may provide a conceptual foundation for much of ecology, just as genetic theory provides a foundation for much of evolutionary biology.

6,017 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: It is argued that human actions are dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate, and the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper is asked.
Abstract: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.

5,244 citations

Journal ArticleDOI
24 Jan 2002-Nature
TL;DR: The nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator, and this model behaved very similarly to humans in a visual–haptic task.
Abstract: When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.

4,142 citations