scispace - formally typeset
Search or ask a question
Author

Peter J. Boul

Other affiliations: Halliburton, Rice University, University of Strasbourg  ...read more
Bio: Peter J. Boul is an academic researcher from Saudi Aramco. The author has contributed to research in topics: Cement & Carbon nanotube. The author has an hindex of 24, co-authored 91 publications receiving 9837 citations. Previous affiliations of Peter J. Boul include Halliburton & Rice University.


Papers
More filters
Journal ArticleDOI
26 Jul 2002-Science
TL;DR: At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap–selective protonation of the side walls of the tube, which is readily reversed by treatment with base or ultraviolet light.
Abstract: Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap-selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.

3,635 citations

Journal ArticleDOI
TL;DR: In this paper, a general thermodynamic drive for this wrapping is discussed, wherein the polymer disrupts both the hydrophobic interface with water and the smooth tube-tube interactions in aggregates.

1,770 citations

Journal ArticleDOI
TL;DR: A readily scalable purification process capable of handling single-wall carbon nanotube (SWNT) material in large batches, which should greatly facilitate investigation of material properties intrinsic to the nanotubes.
Abstract: We describe, in detail, a readily scalable purification process capable of handling single-wall carbon nanotube (SWNT) material in large batches. Characterization of the resulting material by SEM, TEM, XRD, Raman scattering, and TGA shows it to be highly pure. Resistivity measurements on freestanding mats of the purified tubes are also reported. We also report progress in scaling up SWNT production by the dual pulsed laser vaporization process. These successes enable the production of gram per day quantities of highly pure SWNT, which should greatly facilitate investigation of material properties intrinsic to the nanotubes.

1,400 citations

Journal ArticleDOI
TL;DR: In this paper, a method for placing individual carbon nanotubes at specific locations and orientations in such a way that the carbon wires contact metal electrodes has been proposed, which is potentially very important for fabrication of simple electrical circuits with carbon wires.

563 citations

Journal ArticleDOI
TL;DR: In this paper, the solvation of individual carbon nanotubes was verified by dispersing the tubes on a mica substrate and examining them with atomic force microscopy (AFM), which revealed that light sonication in alcohol solvents does not remove significant amounts of the fluorine.
Abstract: Highly purified single-wall carbon nanotubes (SWNTs) were fluorinated to form “fluorotubes”, which were then solvated as individual tubes in various alcohol solvents via ultrasonication. The solvation of individual fluorotubes was verified by dispersing the tubes on a mica substrate and examining them with atomic force microscopy (AFM). Elemental analysis of the tubes reveals that light sonication in alcohol solvents does not remove significant amounts of the fluorine. While these solutions are metastable, they will persist long enough (over a week) to permit solution-phase chemistry to be carried out on the fluorotubes. For example, the solvated fluorotubes can be precipitated out of solution with hydrazine to yield normal, unfluorinated SWNTs, or they can be reacted with sodium methoxide to yield what are apparently methoxylated SWNTs. These reaction products have been examined with elemental analysis and a variety of spectroscopies and microscopies.

471 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.

6,496 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations