scispace - formally typeset
Search or ask a question
Author

Peter J. D. Andrews

Other affiliations: Western General Hospital
Bio: Peter J. D. Andrews is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Intensive care & Traumatic brain injury. The author has an hindex of 43, co-authored 168 publications receiving 7322 citations. Previous affiliations of Peter J. D. Andrews include Western General Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The most significant predictors of mortality in this patient set were durations of hypotensive, pyrexic, and hypoxemic insults, which occurred in all severities of head trauma, at all ages, and at every level of Injury Severity Score.
Abstract: Primary traumatic brain damage may be compounded by secondary pathophysiological insults that can occur soon after trauma, during transfer to hospital or subsequent treatment of the head-injured patient. The aim of this prospective study was to quantify the burden of a wide range of secondary insults occurring after head injury and to relate these to 12-month outcome. In 124 adult head-injured patients studied during intensive care using a computerized data collection system, or = 5 min, as defined by the Edinburgh University Secondary Insult Grading scheme, were analysed by insult grade and duration. A greater incidence of secondary insults was detected than previous studies have indicated. Insults were found in 91% of patients and occurred in all severities of head trauma, at all ages, and at every level of Injury Severity Score (ISS). The cumulative durations were much greater than previously recorded although 85% of the total time was at the least severe grade. Short duration insults were common. In 71 patients, in whom 8 insults could be assessed (intracranial pressure, arterial hypo- and hypertension, cerebral perfusion pressure, hypoxemia, pyrexia, brady- and tachycardia), outcome at 12 months was analysed using logistic regression to determine the relative influence of age, admission Glasgow Coma Sumscore, ISS, pupil response on admission, and insult duration on both mortality and morbidity. The most significant predictors of mortality in this patient set were durations of hypotensive (p = .0064), pyrexic (p = .0137), and hypoxemic (p = .0244) insults. When good versus poor outcome was considered, hypotensive insults (p = .0118) and pupil response on admission (p = .0226) were significant.

464 citations

Journal ArticleDOI
TL;DR: One of the most important recommendations was that hypotension is not required to define shock, and as a result, importance is assigned to the presence of inadequate tissue perfusion on physical examination.
Abstract: Objective Shock is a severe syndrome resulting in multiple organ dysfunction and a high mortality rate. The goal of this consensus statement is to provide recommendations regarding the monitoring and management of the critically ill patient with shock.

455 citations

Journal ArticleDOI
TL;DR: Investigation of the relationships between TCD flow velocity, SJO2, and alterations in blood pressure, intracranial pressure, and cerebral perfusion pressure in severely brain-injured patients suggested progressive failure of cerebral blood flow to meet metabolic demands.
Abstract: Middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation (SJO2) were measured by transcranial Doppler (TCD) ultrasonography and continuous venous oximetry, respectively, in 41 severely brain-injured patients. The purpose of the study was to examine the relationships between TCD flow velocity, SJO2, and alterations in blood pressure (BP), intracranial pressure (ICP), and cerebral perfusion pressure (CPP). In these patients, CPP was reduced either by rising ICP or by falling BP. Both forms of reduction of CPP resulted in a greater fall in diastolic flow velocity than other flow parameters. As CPP decreased below a critical value of 70 mm Hg, a progressive increase in TCD pulsatility index (PI) was observed (r = -0.942, p less than 0.0001), accompanied by a fall in SJO2 (r = 0.78, p less than 0.0001). At pressures above 70 mm Hg, there was no correlation of either PI or SJO2 with CPP. The relationship between PI and CPP held true in patients with both focal and diffuse pathologies and was the same whether changes in CPP resulted from alterations in ICP or BP. The PI and SJO2 correlated better with CPP than with ICP or BP. Transcranial Doppler ultrasonography can identify states of reduced CPP. Decreases in SJO2 with falling CPP suggested progressive failure of cerebral blood flow to meet metabolic demands. Monitoring of TCD and SJO2 may be used to define the optimum CPP level for management of severely brain-injured patients.

383 citations

Journal ArticleDOI
17 Mar 2011-BMJ
TL;DR: The primary (intention to treat) analysis showed no effect on new infections or on mortality when parenteral nutrition was supplemented with glutamine or selenium, and patients who received parenTERal nutrition supplemented with selenum for ≥5 days did show a reduction in new infections.
Abstract: Objective To determine whether inclusion of glutamine, selenium, or both in a standard isonitrogenous, isocaloric preparation of parenteral nutrition influenced new infections and mortality among critically ill patients. Design Randomised, double blinded, factorial, controlled trial. Setting Level 2 and 3 (or combined) critical care units in Scotland. All 22 units were invited, and 10 participated. Participants 502 adults in intensive care units and high dependency units for ≥48 hours, with gastrointestinal failure and requiring parenteral nutrition. Interventions Parenteral glutamine (20.2 g/day) or selenium (500 μg/day), or both, for up to seven days. Main outcome measures Primary outcomes were participants with new infections in the first 14 days and mortality. An intention to treat analysis and a prespecified analysis of patients who received ≥5 days of the trial intervention are presented. Secondary outcomes included critical care unit and acute hospital lengths of stay, days of antibiotic use, and modified SOFA (Sepsis-related Organ Failure Assessment) score. Results Selenium supplementation did not significantly affect patients developing a new infection (126/251 v 139/251, odds ratio 0.81 (95% CI 0.57 to 1.15)), except for those who had received ≥5 days of supplementation (odds ratio 0.53 (0.30 to 0.93)). There was no overall effect of glutamine on new infections (134/250 v 131/252, odds ratio 1.07 (0.75 to 1.53)), even if patients received ≥5 days of supplementation (odds ratio 0.99 (0.56 to 1.75)). Six month mortality was not significantly different for selenium (107/251 v 114/251, odds ratio 0.89 (0.62 to 1.29)) or glutamine (115/250 v 106/252, 1.18 (0.82 to 1.70)). Length of stay, days of antibiotic use, and modified SOFA score were not significantly affected by selenium or glutamine supplementation. Conclusions The primary (intention to treat) analysis showed no effect on new infections or on mortality when parenteral nutrition was supplemented with glutamine or selenium. Patients who received parenteral nutrition supplemented with selenium for ≥5 days did show a reduction in new infections. This finding requires confirmation. Trial registration Current Controlled Trials ISRCTN87144826

341 citations

Journal ArticleDOI
TL;DR: All variables in the model are clinically simple and easy to measure rapidly in a centre with access to 24 hour CT, resulting in a model that is both well validated and clinically useful.
Abstract: Objectives—Prediction of patient outcome can be useful as an aid to clinical decision making, to explore possible biological mechanisms, and as part of the clinical audit process. Many studies have constructed predictive models for survival after traumatic brain injury, but these have often used expensive, time consuming, or highly specialised measurements. The aim of this study was to develop a simple easy to use model involving only variables which are rapidly and easily clinically achievable in routine practice. Methods—All consecutive patients admitted to a regional trauma centre with moderate or severe head injury were enrolled in the study. Basic demographic, injury, and CT characteristics were recorded. Patient survival at 1 year was used to construct a simple predictive model which was then validated on a very similar patient group. Results—372 patients were included in the study, of whom 365 (98%) were followed up for survival at 1 year. Multiple logistic regression resulted in a model containing age (p<0.001), Glasgow coma scale score (p<0.001), injury severity score (p<0.001), pupil reactivity (p=0.004), and presence of haematoma on CT (p=0.004) as independently significant predictors of survival. The model was validated on an independent set of 520 patients, showing good discrimination and adequate calibration, but with a tendency to be pessimistic about very severely injured patients. It is presented as an easy to use nomogram. Conclusions—All five variables have previously been shown to be related to survival. All variables in the model are clinically simple and easy to measure rapidly in a centre with access to 24 hour CT, resulting in a model that is both well validated and clinically useful. (J Neurol Neurosurg Psychiatry 1999;66:20‐25)

276 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Book
01 Jan 2009

8,216 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: The guidelines reiterate the importance of nutrition assessment-particularly, the detection of malnourished patients who are most vulnerable and therefore may benefit from timely intervention and there is a need for renewed focus on accurate estimation of energy needs and attention to optimizing protein intake.
Abstract: This document represents the first collaboration between 2 organizations-the American Society for Parenteral and Enteral Nutrition and the Society of Critical Care Medicine-to describe best practices in nutrition therapy in critically ill children. The target of these guidelines is intended to be the pediatric critically ill patient (>1 month and 2-3 days in a PICU admitting medical, surgical, and cardiac patients. In total, 2032 citations were scanned for relevance. The PubMed/MEDLINE search resulted in 960 citations for clinical trials and 925 citations for cohort studies. The EMBASE search for clinical trials culled 1661 citations. In total, the search for clinical trials yielded 1107 citations, whereas the cohort search yielded 925. After careful review, 16 randomized controlled trials and 37 cohort studies appeared to answer 1 of the 8 preidentified question groups for this guideline. We used the GRADE criteria (Grading of Recommendations, Assessment, Development, and Evaluation) to adjust the evidence grade based on assessment of the quality of study design and execution. These guidelines are not intended for neonates or adult patients. The guidelines reiterate the importance of nutrition assessment-particularly, the detection of malnourished patients who are most vulnerable and therefore may benefit from timely intervention. There is a need for renewed focus on accurate estimation of energy needs and attention to optimizing protein intake. Indirect calorimetry, where feasible, and cautious use of estimating equations and increased surveillance for unintended caloric underfeeding and overfeeding are recommended. Optimal protein intake and its correlation with clinical outcomes are areas of great interest. The optimal route and timing of nutrient delivery are areas of intense debate and investigations. Enteral nutrition remains the preferred route for nutrient delivery. Several strategies to optimize enteral nutrition during critical illness have emerged. The role of supplemental parenteral nutrition has been highlighted, and a delayed approach appears to be beneficial. Immunonutrition cannot be currently recommended. Overall, the pediatric critical care population is heterogeneous, and a nuanced approach to individualizing nutrition support with the aim of improving clinical outcomes is necessary.

2,947 citations