scispace - formally typeset

Author

Peter J. Schmid

Bio: Peter J. Schmid is an academic researcher from Imperial College London. The author has contributed to research in topic(s): Instability & Vortex. The author has an hindex of 44, co-authored 208 publication(s) receiving 13031 citation(s). Previous affiliations of Peter J. Schmid include University of Washington & Centre national de la recherche scientifique.
Papers
More filters

Journal ArticleDOI
Abstract: The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.

2,909 citations


Book
28 Dec 2000
Abstract: 1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

2,182 citations


Journal ArticleDOI
Abstract: Hydrodynamic stability theory has recently seen a great deal of development. After being dominated by modal (eigenvalue) analysis for many decades, a different perspective has emerged that allows the quantitative description of short-term disturbance behavior. A general formulation based on the linear initial-value problem, thus circumventing the normal-mode approach, yields an efficient framework for stability calculations that is easily extendable to incorporate time-dependent flows, spatially varying configurations, stochastic influences, nonlinear effects, and flows in complex geometries.

824 citations


Journal ArticleDOI
Abstract: Dynamic mode decomposition (DMD) represents an effective means for capturing the essential features of numerically or experimentally generated flow fields. In order to achieve a desirable tradeoff between the quality of approximation and the number of modes that are used to approximate the given fields, we develop a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced by regularizing the least-squares deviation between the matrix of snapshots and the linear combination of DMD modes with an additional term that penalizes the l1-norm of the vector of DMD amplitudes. The globally optimal solution of the resulting regularized convex optimization problem is computed using the alternating direction method of multipliers, an algorithm well-suited for large problems. Several examples of flow fields resulting from numerical simulations and physical experiments are used to illustrate the effectiveness of the developed method.

530 citations


Journal ArticleDOI
TL;DR: The spectrum of the Orr–Sommerfeld operator consists of three branches and it is shown that the eigenvalues at the intersection of the branches are highly sensitive to perturbations and that the sensitivity increases dramatically with the Reynolds number.
Abstract: This paper investigates the pseudospectra and the numerical range of the Orr–Sommerfeld operator for plane Poiseuille flow. A number $z \in {\bf C}$ is in the $\epsilon $-pseudospectrum of a matrix or operator A if $\| ( zI - A )^{ - 1} \| \geq \epsilon ^{ - 1} $, or, equivalently, if z is in the spectrum of $A + E$ for some perturbation E satisfying $\| E \| \leq \epsilon $. The numerical range of A is the set of numbers of the form $( Au,u )$, where $( \cdot , \cdot )$ is the inner product and u is a vector or function with huh $\| u \| = 1$.The spectrum of the Orr–Sommerfeld operator consists of three branches. It is shown that the eigenvalues at the intersection of the branches are highly sensitive to perturbations and that the sensitivity increases dramatically with the Reynolds number. The associated eigenfunctions are nearly linearly dependent, even though they form a complete set.To understand the high sensitivity of the eigenvalues, a model operator is considered, related to the Airy equation tha...

399 citations


Cited by
More filters

Journal ArticleDOI
Abstract: The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.

2,909 citations


S.R. Liberty1Institutions (1)
01 Nov 1981
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,684 citations


Journal ArticleDOI
30 Jul 1993-Science
TL;DR: A reconciliation of findings with the traditional analysis is presented based on the "pseudospectra" of the linearized problem, which imply that small perturbations to the smooth flow may be amplified by factors on the order of 105 by a linear mechanism even though all the eigenmodes decay monotonically.
Abstract: Fluid flows that are smooth at low speeds become unstable and then turbulent at higher speeds. This phenomenon has traditionally been investigated by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem, but the results of such investigations agree poorly in many cases with experiments. Nevertheless, linear effects play a central role in hydrodynamic instability. A reconciliation of these findings with the traditional analysis is presented based on the "pseudospectra" of the linearized problem, which imply that small perturbations to the smooth flow may be amplified by factors on the order of 105 by a linear mechanism even though all the eigenmodes decay monotonically. The methods suggested here apply also to other problems in the mathematical sciences that involve nonorthogonal eigenfunctions.

1,623 citations


Journal ArticleDOI
TL;DR: This work develops a novel framework to discover governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity techniques and machine learning and using sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data.
Abstract: Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

1,522 citations


Journal ArticleDOI
Abstract: We present a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a variant of a standard Arnoldi method. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to proper orthogonal decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi method used for computations is identical to the dynamic mode decomposition recently proposed by Schmid & Sesterhenn (Sixty-First Annual Meeting of the APS Division of Fluid Dynamics, 2008), so dynamic mode decomposition can be thought of as an algorithm for finding Koopman modes. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.

1,266 citations


Network Information
Related Authors (5)
Denis Sipp

132 papers, 4K citations

91% related
Patrick Huerre

68 papers, 8.3K citations

81% related
Jean-Marc Chomaz

186 papers, 7.5K citations

73% related
Beverley McKeon

207 papers, 7.5K citations

72% related
Thierry Schuller

118 papers, 5.6K citations

65% related
Performance
Metrics

Author's H-index: 44

No. of papers from the Author in previous years
YearPapers
20223
20218
20208
20197
201810
20179